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1 INTRODUCTION 
 
This document contains the description of the BV16 speech codec1.  BV16 compresses 8 kHz 
sampled narrowband speech to a bit rate of 16 kb/s by employing a speech coding algorithm called 
Two-Stage Noise Feedback Coding (TSNFC), developed by Broadcom. 
 
The rest of this document is organized as follows.  Section 2 gives a high-level overview of the 
TSNFC algorithm.  Sections 3 and 4 give detailed description of the BV16 encoder and decoder, 
respectively.  The BV16 codec specification given in Sections 3 and 4 contain sufficient details to 
allow those skilled in the art to implement bit-stream compatible and functionally equivalent 
BV16 encoders and decoders. 
 

2 OVERVIEW OF THE BV16 SPEECH CODEC 
 
In this section, the general principles of Two-Stage Noise Feedback Coding (TSNFC) are first 
introduced.  Next, an overview of the BV16 algorithm is given. 
 

2.1 Brief Introduction of Two-Stage Noise Feedback Coding (TSNFC) 
 
In conventional Noise Feedback Coding (NFC), the encoder modifies a prediction residual signal 
by adding a noise feedback signal to it.  A scalar quantizer quantizes this modified prediction 
residual signal. The difference between the quantizer input and output, or the quantization error 
signal, is passed through a noise feedback filter. The output signal of this filter is the noise 
feedback signal added to the prediction residual.  The noise feedback filter is used to control the 
spectrum of the coding noise in order to minimize the perceived coding noise. This is achieved by 
exploiting the masking properties of the human auditory system.  
 
Conventional NFC codecs typically use only a short-term noise feedback filter to shape the 
spectral envelope of the coding noise, and a scalar quantizer is used universally.  In contrast, 
Broadcom’s Two-Stage Noise Feedback Coding (TSNFC) system uses a codec structure 
employing two stages of noise feedback coding in a nested loop: the first NFC stage performs 
short-term prediction and short-term noise spectral shaping (spectral envelope shaping), and the 
second nested NFC stage performs long-term prediction and long-term noise spectral shaping 
(harmonic shaping).  Such a nested two-stage NFC structure is shown in Figure 1 below.   
 

                                                           
1 The “BV16 speech codec” specification is based on Broadcom Corporation’s BroadVoice®16 speech codec.  Implementation of 
this standard may require a license of Broadcom patents; information regarding these patents, and a declaration of licensing intent, 
may be found at the SCTE web site. 
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Figure 1  Basic codec structure of Two-Stage Noise Feedback Coding (TSNFC) 

 
 
In Figure 1 above, the outer layer (including the two short-term predictors and the short-term noise 
feedback filter) follows the structure of the conventional NFC codec.  The TSNFC structure in 
Figure 1 is obtained by replacing the simple scalar quantizer in the conventional (single-stage) 
NFC structure by a “predictive quantizer” that employs long-term prediction and long-term noise 
spectral shaping.  This “predictive quantizer” is represented by the inner feedback loop in Figure 1, 
including the long-term predictor and long-term noise feedback filter.  This inner feedback loop 
uses an alternative but equivalent conventional NFC structure, where )(zN l  represents the filter 
whose frequency response is the desired noise shape for long-term noise spectral shaping.  In the 
outer layer, the short-term noise feedback filter )(zFs  is usually chosen as a bandwidth-expanded 
version of the short-term predictor )(zPs . The choice of different NFC structures in the outer and 
inner layers is based on complexity consideration.   By combining two stages of NFC in a nested 
loop, the TSNFC in Figure 1 can reap the benefits of both short-term and long-term prediction and 
also achieve short-term and long-term noise spectral shaping at the same time. 
 
It is natural and straightforward to use a scalar quantizer in Figure 1.  However, to achieve better 
coding efficiency, a vector quantizer is used in BV16. In the Vector Quantization (VQ) codebook 
search, the )(nu  vector cannot be generated before the VQ codebook search starts. Due to the 
feedback structure in Figure 1, the elements of )(nu  from the second element on will depend on 
the vector-quantized version of earlier elements.  Therefore, the VQ codebook search is performed 
by trying out each of the candidate codevectors in the VQ codebook (i.e. fixing a candidate )(nuq  
vector first), calculating the corresponding )(nu  vector and the corresponding VQ error 

)()()( nuqnunq −= .  The VQ codevector that minimizes the energy of )(nq  within the current 
vector time span is chosen as the winning codevector, and the corresponding codebook index 
becomes part of the encoder output bit stream for the current speech frame. 
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The TSNFC decoder structure is simply a quantizer decoder followed by the two feedback filter 
structures involving the long-term predictor and the short-term predictor, respectively, shown on 
the right half of Figure 1.  Thus, the TSNFC decoder is similar to the decoders of other predictive 
coding techniques such as Adaptive Predictive Coding (APC), Multi-Pulse Linear Predictive 
Coding (MPLPC), and Code-Excited Linear Prediction (CELP). 
 
If the alternative NFC structure in the inner feedback loop of Figure 1 is also used in the outer 
feedback loop, an alternative TSNFC codec structure is obtained, as shown in Figure 2 below.  
Here )(zN s  represents a short-term filter whose frequency response is the desired noise shape for 
short-term noise spectral shaping.  The codec structure in Figure 2 is mathematically equivalent to 
the structure in Figure 1, but it allows direct specification of the short-term noise spectral shape as 
defined by )(zN s . This can be an advantage in some applications. 
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Figure 2  An alternative codec structure of Two-Stage Noise Feedback Coding (TSNFC) 

 
 

2.2 Overview of the BV16 Codec 
 
The BV16 codec is a purely forward-adaptive TSNFC codec.  It operates at an input sampling rate 
of 8 kHz and an encoding bit rate of 16 kb/s, or 2 bits per sample.  BV16 uses a frame size of 5 
ms, or 40 samples.  There is no look ahead.  Therefore, the total algorithmic buffering delay is just 
the frame size itself, or 5 ms. The main design goal of BV16 is to make the coding delay and the 
codec complexity as low as possible, while providing toll speech quality exceeding or equivalent 
to that of G.728 and G.729E. 
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The block diagram of the BV16 encoder is shown in Figure 3.  It is based on the alternative 
TSNFC codec structure shown in Figure 2.  The BV16 decoder block diagram is shown in Figure 
4.    
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Figure 3  Block diagram of the BV16 encoder 

 
Due to the small frame size, the parameters of the short-term predictor (also called the “LPC 
predictor”) and the long-term predictor (also called the “pitch predictor”) are both transmitted and 
updated once a frame. The gain of the excitation signal is transmitted once every frame. The 
excitation VQ uses a vector dimension of 4 samples.  Hence, there are 10 excitation vectors in a 
frame.   
 
The BV16 encoder first passes the input signal through a fixed pole-zero high-pass pre-filter to 
remove possible DC bias or low frequency rumble.  The resulting signal is then used to derive the 
LPC predictor coefficients. 
 
To keep the complexity low, BV16 uses a relatively low LPC predictor order of 8, and the LPC 
analysis window is 20 ms (160 samples) long.  The LPC analysis window is asymmetric, with the 
peak of the window located at the center of the current frame, and the end of the window 
coinciding with the last sample of the current frame.  Autocorrelation LPC analysis based on 
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Levinson-Durbin recursion is used to derive the coefficients of the 8th-order LPC predictor.  The 
derived LPC predictor coefficients are converted to Line-Spectrum Pair (LSP) parameters, which 
are then quantized by an inter-frame predictive coding scheme. 
 
The inter-frame prediction of LSP parameters uses an 8th-order moving-average (MA) predictor.  
The MA predictor coefficients are fixed.  The time span that this MA predictor covers is 8 × 5 ms 
= 40 ms. The inter-frame LSP prediction residual is quantized by a two-stage vector quantizer.  
The first stage employs an 8-dimensional vector quantizer with a 7-bit codebook. The second stage 
uses an 8-dimensional sign-shape VQ with 1 bit for sign and 6 bits for shape. 
 
For long-term prediction, a three-tap pitch predictor with an integer pitch period is used.  To keep 
the complexity low, the pitch period and the pitch taps are both determined in an open-loop 
fashion.   
The three pitch predictor taps are jointly quantized using a 5-bit vector quantizer.  The distortion 
measure used in the codebook search is the energy of the open-loop pitch prediction residual.  The 
32 codevectors in the pitch tap codebook have been “stabilized” to make sure that they will not 
give rise to an unstable pitch synthesis filter. 
 
The excitation gain is also determined in an open-loop fashion to keep the complexity low. The 
average power of the open-loop pitch prediction residual within the current frame is calculated and 
converted to the logarithmic domain.  The resulting log-gain is then quantized using inter-
subframe MA predictive coding.  The MA predictor order for the log-gain is 8, corresponding to a 
time span of 8 × 5 = 40 ms. Again, the log-gain MA predictor coefficients are fixed.  The log-gain 
prediction residual is quantized by a 4-bit scalar quantizer. 
 
The 4-dimensional excitation VQ codebook has a simple sign-shape structure, with 1 bit for sign, 
and 4 bits for shape.  In other words, only 16 four-dimensional codevectors are stored, but the 
mirror image of each codevector with respect to the origin is also a codevector.   
 
In the BV16 decoder, the decoded excitation vectors are scaled by the excitation gain.  The scaled 
excitation signal passes through a long-term synthesis filter and a short-term synthesis filter.  
Figure 4 shows the block diagram of the BV16 decoder.   
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Figure 4  Block diagram of the BV16 decoder 

 
 
Table 1 shows the bit allocation of BV16 in each 5 ms frame.  The LSP parameters are encoded 
into 14 bits per frame, including 7 bits for the first-stage VQ, and 1 + 6 = 7 bits for the second-
stage sign-shape VQ.  The pitch period and pitch predictor taps are encoded into 7 and 5 bits, 
respectively. The excitation gain in each frame is encoded into 4 bits.  The 10 excitation vectors 
are each encoded with 1 bit for sign and 4 bits for shape, resulting in 50 bits per frame for 
excitation VQ.  Including the other 30 bits of side information, the grand total is 80 bits per 40-
sample frame, which is 2 bits/sample, or 16 kb/s. 
 

Table 1  Bit allocation of the BV16 codec 

Parameter Bits per frame (40 samples)  
LSP 7 + 7 = 14 

Pitch Period 7 
3 Pitch Predictor Taps 5 

Excitation Gain 4 
10 Excitation Vectors (1 + 4) × 10 = 50 

Total 80 
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3 DETAILED DESCRIPTION OF THE BV16 ENCODER 
 
In this section, detailed description of each functional block of the BV16 encoder in Figure 3 is 
given. When necessary, certain functional blocks will be expanded into more detailed block 
diagrams.  The description given in this section will be in sufficient detail to allow those skilled in 
the art to implement a mathematically equivalent BV16 encoder.   
 

3.1 High-Pass Pre-Filtering 
 
Refer to Figure 3.  The input signal is assumed to be represented by 16-bit linear PCM.  Block 203 
is a high-pass pre-filter with fixed coefficients.  It is a second-order pole-zero filter with the 
following transfer function. 
 

21

21

 0.905396 1.8991091
 0.924133 1.8482670.924133
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zz
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This high-pass pre-filter removes undesirable low-frequency components from the input signal. 
 

3.2 Short-Term Linear Predictive Analysis  
 
The high-pass filtered signal )(ns  is buffered at block 210, which performs short-term linear predictive 
analysis and quantization to obtain the coefficients for the short-term predictor 240 and the short-term 
noise feedback filter 250.  This block 210 is further expanded in Figure 5.   

Refer to Figure 5.  The input signal )(ns  is buffered in block 211, where a 20 ms asymmetric 
analysis window is applied to the buffered )(ns  signal array.  The “left window” is 17.5 ms long, 
and the “right window” is 2.5 ms long.  Let LWINSZ be the number of samples in the left window 
(LWINSZ = 140 for 8 kHz sampling), then the left window is given by  
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π
 , n = 1, 2, …, LWINSZ. 

 
Let RWINSZ be the number of samples in the right window.  Then, RWINSZ = 20 for 8 kHz 
sampling.  The right window is given by 
 

�
�

	


�

� −=
RWINSZ
n

nwr
2

)1(
cos)(

π
, n = 1, 2, …, RWINSZ . 

 
The concatenation of wl(n)  and wr(n) gives the 20 ms asymmetrical analysis window, with the 
peak of the window located at the center of the current frame.  When applying this analysis 
window, the last sample of the window is lined up with the last sample of the current frame. 
Therefore, the codec does not use any look ahead. 
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Figure 5  Short-term linear predictive analysis and quantization (block 210) 

 
 
More specifically, without loss of generality, let the sampling time index range of n = 1, 2, …, 
FRSZ corresponds to the current frame, where the frame size FRSZ = 40.  Then, the s(n) signal 
buffer stored in block 211 is for n = -119, -118, …, -1, 0, 1, 2, …, 40.  The asymmetrical LPC 
analysis window function can be expressed as  
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The windowing operation is performed as follows. 
 

),()()( nwnsnsw =    n = -119, -118, …, -1, 0, 1, 2, …, 40.   
 
 

Next, block 211 calculates the autocorrelation coefficients as follows. 
 

�
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−=
40
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ww insnsir ,   i = 0, 1, 2, …, 8. 

 
The calculated autocorrelation coefficients are passed to block 212, which applies a Gaussian 
window to the autocorrelation coefficients to perform spectral smoothing.  The Gaussian window 
function is given by 
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where sf  is the sampling rate of the input signal, expressed in Hz, and σ is 40 Hz. 
After multiplying the r(i) array by such a Gaussian window, block 212 then multiplies r(0) by a 
white noise correction factor of WNCF = 1 + ε  , where ε  = 0.0001. In summary, the output of 
block 212 is given by 
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Block 213 performs the Levinson-Durbin recursion to convert the autocorrelation coefficients )(ˆ ir  
to the short-term predictor coefficients iâ  , i = 0, 1, …, 8.  If the Levinson-Durbin recursion exits 
pre-maturely before the recursion is completed (for example, because the prediction residual 
energy E(i) is less than zero), then the short-term predictor coefficients of the last frame is also 
used in the current frame.  To do the exception handling this way, there needs to be an initial value 
of the iâ  array.  The initial value of the iâ  array is set to 1ˆ0 =a  and iâ  = 0 for i = 1, 2, …, 8. The 
Levinson-Durbin recursion is performed in the following algorithm. 
 

1. If 0)0(ˆ ≤r , use the iâ  array of the last frame, and exit the Levinson-Durbin recursion. 
2. )0(ˆ)0( rE =  
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4. 1
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6. If 0)1( ≤E , use the iâ  array of the last frame, and exit the Levinson-Durbin recursion. 
7. For i = 2, 3, 4, …, 8, do the following  
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If the recursion is exited pre-maturely, the iâ  array of the last frame is used as the output of block 
213.  If the recursion is completed successfully (which is normally the case), then the final output 
of block 213 is taken as 
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Block 214 performs bandwidth expansion as follows 
 

i
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In addition, it also performs bandwidth expansion operations to derive the coefficients of the short-
term noise feedback filter (block 250).  Block 250 in Figure 3 has a transfer function of 
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Block 214 calculates the coefficients of )(zFs  as 
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i

i â)85.0(ˆ =α  , for i = 0, 1, …, 8, 
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3.3 Conversion to LSP 
 
In Figure 5, block 215 converts the LPC coefficients 8 ,,2 ,1 , �=iai  of the prediction error filter 
given by 
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to a set of 8 Line-Spectrum Pair (LSP) coefficients 8 ,,2 ,1 , �=ili .  The LSP coefficients, also 
known as the Line Spectrum Frequencies (LSF), are the angular positions normalized to 1, i.e. 1.0 
corresponds to the Nyquist frequency, of the roots of  
 

)()()( 19 −−+= zAzzAzAp  

 
and  
 

)()()( 19 −−−= zAzzAzAm  
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on the upper half of the unit circle, πωω ≤≤= 0 ,jez , less the trivial roots in 1−=z  and 1=z  of 
)(zAp  and )(zAm , respectively.  Due to the symmetry and anti-symmetric of )(zAp  and )(zAm , 

respectively, the roots of interest can be determined as the roots of 
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The subscript "p|m" means dual versions of the equation exist, with either subscript "p" or 
subscript "m".  The roots of )(zAp  and )(zAm , and therefore the roots of )(ωpG  and )(ωmG , are 

interlaced, with the first root belonging to )(ωpG .  The evaluation of the functions )(ωpG  and 

)(ωmG  are carried out efficiently using Chebyshev polynomial series.  With the mapping 
)cos(ω=x ,  

 
( )xTm m=)cos( ω  

 
where ( )xTm  is the mth-order Chebyshev polynomial, the two functions )(ωpG  and )(ωmG  can be 

expressed as 
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Due to the recursive nature of Chebyshev polynomials the functions can be evaluated as 
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where )(0,| xb mp  and )(2,| xb mp  are calculated using the following recurrence 

 
impimpimpimp gxbxbxxb ,|2,|1,|,| )()( 2)( +−= ++  

 
with initial conditions 0)()( 6,|5,| == xbxb mpmp . 

 
The roots of )(xGp  and )(xGm  are determined in an alternating fashion starting with a root in 

)(xGp .  Each root of )(xGp  and )(xGm  is located by identifying a sign change of the relevant 

function along a grid of 60 points, given in Appendix 1.  The estimation of the root is then refined 
using 4 bisections followed by a final linear interpolation between the two points surrounding the 
root.  It should be noted that the roots and grid points are in the cosine domain.  Once the 8 roots 
 

( ) 8 ,,2 ,1      ,cos �== ix ii ω  
 
are determined in the cosine domain, they are converted to the normalized frequency domain 
according to 
 

( ) 8 ,,2 ,1      ,cos 1
�== − ixl ii π  

 
in order to obtain the LSP coefficients.  In the rare event that less than 8 roots are found, block 215 
returns the LSP coefficients of the previous frame, 8 ,,2 ,1 ),1( �=− ikli , where the additional 
parameter k  represents the frame index of the current frame.  The LSP coefficients of the previous 
frame at the very first frame are initialized to  
 

8 ,,2 ,1      ,9/)0( �== iili . 
 
 

3.4 LSP Quantization 
 
Block 216 of Figure 5 vector-quantizes and encodes the LSP coefficient vector, 

Tlll  
821 ][ �=l , to a total of 14 bits.  The output LSP quantizer index array, 

{ }21, LSPILSPILSPI = , is passed to the bit multiplexer (block 295), while the quantized LSP 

coefficient vector, Tlll  
821 ]
~~~

[~
�=l , is passed to block 217.   
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The LSP quantizer is based on mean-removed inter-frame moving-average (MA) prediction with 
two-stage vector quantization (VQ) of the prediction error.  The quantizer enables bit-error 
detection at the decoder by constraining the codevector selection at the encoder.  It should be noted 
that the encoder must perform the specified constrained VQ in order to maintain interoperability 
properly.  The first-stage VQ is searched using the simple mean-squared error (MSE) distortion 
criterion, while the second-stage sign-shape VQ is searched using the weighted mean-square error 
(WMSE) distortion criterion.  
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Figure 6  LSP quantizer (block 216) 

 
 
Block 216 is further expanded in Figure 6.  The first-stage VQ takes place in block 2165, and the 
second-stage constrained sign-shape VQ takes place in block 21615.  Except for the LSP quantizer 
indices 21, LSPILSPI  all signal paths in Figure 6 are for vectors of dimension 8.  Block 2161 uses 
the unquantized LSP coefficient vector to calculate the weights to be used later in the second-stage 
WMSE VQ.  The weights are determined as 
 

�


�
�

�

=−
<<−−

=−
=

−

+−

8),/(1 
81),,min(/1 

1),/(1 

1

11

12

ill

illll

ill

w

MM

iiiii   . 

 
Basically, the i-th weight is the inverse of the distance between the i-th LSP coefficient and its 
nearest neighbor LSP coefficient.   
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Adder 2162 subtracts the constant LSP mean vector,  
 

[ ] T 0.80072020.70581050.58770750.47808840.36294560.25131230.14895630.0950317=l , 
 
from the unquantized LSP coefficient vector to get the mean-removed LSP vector, 
 

lle −=1 . 
 
In Figure 6, block 2163 performs 8th order inter-frame MA prediction of the mean-removed LSP 
vector 1e  based on the 2

~e  vectors in the previous 8 frames, where 2
~e  is the quantized version of 

the inter-frame LSP prediction error vector2.  Let )(~
,2 ke i denote the i-th element of the vector 2

~e  in 
the frame that is k frames before the current frame.  Let ie ,1̂  be the i-th element of the inter-frame-

predicted mean-removed LSP vector 1ê . Then, block 2163 calculates the predicted mean-removed 
LSP vector according to 
 

[ ] 8 ,,2 ,1   ,)8(~)7(~)6(~)5(~)4(~)3(~)2(~)1(~ˆ  
,2,2,2,2,2,2,2,2,,1 �=⋅= ieeeeeeeee T
iiiiiiii

T
iLSPi p , 

 
where iLSP ,p  holds the 8 prediction coefficients for the i-th LSP coefficient and is given by 

 

]
]

]
]
]
]
]
]

0.0917360.2014160.2979130.3932500.4843750.5781250.7434690.964844
0.0993040.2190550.3255620.4304810.5357670.6450810.8090211.022278

0.1072390.2326660.3477170.4636840.5773930.6843260.8488161.037476
0.1174930.2561650.3861690.5142820.6360470.7461550.9019781.065552
0.1187740.2642210.3998410.5405880.6735230.7907710.9356081.076843
0.1083370.2380370.3734740.5126950.6445310.7626950.9221801.055237
0.1092530.2402340.3665160.4895630.6098630.7238160.8840941.034851
0.1035770.2260740.3460080.4646000.5759890.6829220.8449711.040710

[
[

[
[
[
[
[
[

8,

7,

6,

5,

4,

3,

2,

1,

=
=
=
=
=
=
=
=

T
LSP

T
LSP

T
LSP

T
LSP

T
LSP

T
LSP

T
LSP

T
LSP

p
p
p
p
p
p
p
p

. 

 
Adder 2164 calculates the prediction error vector 
 

112 êee −= , 
 
which is the input to the first-stage VQ.  In block 2165 the 8-dimensional prediction error vector, 

2e , is vector quantized with the 128-entry, 8-dimensional codebook, 

{ })127(
1

)1(
1

)0(
11 ,,, cbcbcbCB �= , listed in Appendix 2.  The codevector minimizing the MSE is 

denoted 21
~e  and the corresponding index is denoted 1LSPI : 

 

{ }
( ) ( ){ })(

12

T)(
12

127,,1,0
1   minarg kk

k
LSPI cbecbe −−=

∈ �

, 

 
                                                           
2 At the first frame, the previous, non-existing, quantized interframe LSP prediction error vectors are set to zero-vectors. 
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)(
121

1~ LSPIcbe = , 
where the notation )}({minarg iDI

i
=  means that I  is the argument that minimizes the entity 

)(iD , i.e. 
 

)()( iDID ≤  for all i . 
 
Adder 2166 subtracts the first-stage codevector from the prediction error vector to form the 
quantization error vector of the first stage, 
 

21222
~eee −= . 

 
This is the input to the second-stage VQ, which is a sign-shape VQ with a 2-entry, 1-dimensional 
sign codebook, { } { }1,1, 10 +−== ssS , and a 64-entry, 8-dimensional shape codebook, 

{ })63(
2

)1(
2

)0(
22 ,,, cbcbcbCB �= , listed in Appendix 3.  The product codevector that minimizes the 

WMSE, subject to the constraint that the 3 first elements of the intermediate quantized LSP vector,  
 

22211

2

~~ˆ

~ˆ

eeel
ell

+++=
+=

�

, 

 
preserve the ordering property 
 

23

12

1 0

ll

ll

l

��

��

�

≥
≥
≥

, 

 
is selected as, 
 

)(
222

~ sh

sg

I
Is cbe = , 

 
where the indices are given by 
 

{ }{ }
( ) ( ){ })(

222

 )(
222

 63,,1,0, , ,0},1,0{   } ,{},{

  minarg},{
),(

2
),(

3
),(

1
),(

2
),(

1

k
i

Tk
i

jlllllhjhki
shsg ssII

jhjhjhjhjh

cbeWcbe −−=
∈≥≥≥∈∈ �

�����
, 

 
and the weighting matrix is 

�
�
�
�

�

�

�
�
�
�

�

�

=

8

2

1

0

0

w

w

w

�
W . 
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The symbol ),( jh
il
�

 is the i-th element of the reconstructed LSP vector l
�

 that is generated by using a 
sign index hI sg =  and the j-th shape codevector in 2CB .  From the sign index, sgI , and the shape 

index, shI , the index of the second stage VQ, 2LSPI , is calculated as 
 


�
�

=
=−

=
1,
0,127

2
sgsh

sgsh

II

II
LSPI , 

 
In the unlikely event that no product codevector fulfills the constraint, the product codevector 

)0(
222

~ cbe =  is selected, and the index 02 =LSPI  is returned. 
 
Once the quantization is complete, the remaining operations of block 216 construct the quantized 
LSP vector from the codevectors, LSP mean, and MA prediction.  Adder 21611 calculates the 
quantized prediction error vector by adding the stage 1 and stage 2 quantized vectors, 
 

22212
~~~ eee += . 

 
Adder 21612 adds the mean LSP vector and the predicted mean-removed LSP vector to obtain the 
predicted LSP vector, 
 

1ˆˆ ell +=  . 
 
Adder 21613 adds the predicted LSP vector and the quantized prediction error vector to get the 
intermediate reconstructed LSP vector, 
 

2
~ˆ ell +=

�
 . 

 
Block 21614 checks the elements of the reconstructed LSP vector to enforce certain minimum 
spacing rules.  It enforces a minimum value of 6 Hz for the smallest LSP coefficient, a maximum 
value of 3991 Hz for the largest LSP coefficient, and a minimum distance between neighboring 
LSP coefficients of 50 Hz.  In the normalized domain of the LSP coefficients, the spacing 
requirement is given by 
 

0.99775
~

7 ,,2 ,10.0125
~~

0.0015
~

8

1

1

≤
=≥−

≥

+

l

ill

l

ii � . 

 
The spacing is carried out as follows: 
 
(i) The elements of the intermediate reconstructed LSP vector are sorted such that 
 

821 lll
�

�
��

≤≤≤ . 
 

(ii) Set 91025.0max =l . 
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(iii) If 0015.01 <l
�

, set 0015.0
~
1 =l . 

else if max1 ll >
�

, set max1
~

ll = . 

else set 11
~

ll
�

= . 

(iv) for i = 2, 3, … , 8 do the following: 

1. Set 0125.0
~

1min += −ill . 

2. Set 0125.0maxmax +← ll . 

3. If minlli <
�

, set min
~

lli = . 

else if maxlli >
�

, set max
~

lli = . 

else set ii ll
�

=~
. 

 

3.5 Conversion to Short-Term Predictor Coefficients 
 

Refer back to Figure 5.  In block 217, the quantized set of LSP coefficients { il
~

}, which is 
determined once a frame, is converted to the corresponding set of linear prediction coefficients 
{ ia~ }, the quantized linear prediction coefficients for the current frame. 
 
With the notation 
 

4 ,3 ,2 ,1),
~
 cos(

4 ,3 ,2 ,1),
~
 cos(

2,

12,

==
== −

ilx

ilx

iim

iip

π
π

 

 
the 4 unique coefficients of each of the two polynomials )1/()()( 1−∆ += zzAzA pp  and 

)1/()()( 1−∆ −= zzAzA mm  can be determined using the following recursion: 
 

( )
1 ,,2 ,1   ,  2     

  2     

:following  thedo  4, 3, 2, 1,For 

1,|,|2,|,|,|

1,|,|2,|,|

�−−=−+=

−=

=

∆
−

∆
−

∆∆

∆
−

∆
−

∆

iijaxaaa

axaa

i

jmpimpjmpjmpjmp

impimpimpimp
 

with initial conditions 10,| =∆
mpa  and 01,| =∆

−mpa .  In the recursion above, }{ ,
∆

ipa  and }{ ,
∆

ima  are the 

sets of four unique coefficients of the polynomials )(zAp
∆  and )(zAm

∆ , respectively.  Similarly, let 

the two sets of coefficients }{ ,ipa  and }{ ,ima , each of 4 unique coefficients except for a sign on 

}{ ,ima , represent the unique coefficients of the polynomials )(zAp  and )(zAm , respectively.  Then, 

}{ ,ipa  and }{ ,ima  can be obtained from }{ ,
∆

ipa  and }{ ,
∆

ima  as 

 

4 ,3 ,2 ,1,
4 ,3 ,2 ,1,

1,,,

1,,,

=−=
=+=

∆
−

∆

∆
−

∆

iaaa

iaaa

imimim

ipipip  
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From )(zAp  and )(zAm , the polynomial of the prediction error filter is obtained as 

 

2

)()(
)(~ zAzA

zA mp +
= . 

 
In terms of the unique coefficients of )(zAp  and )(zAm , the coefficients }~{ ia  of )(~ zA  can be 

expressed as 
 

�


�
�

�

=−
=+
=

=

−− 8 ,7 ,6 ,5),( 5.0
4 ,3 ,2 ,1),( 5.0

0,0.1
~

9,9,

,,

iaa
iaa

i

a

imip

imipi  

 
where the tilde signifies that the coefficients correspond to the quantized LSP coefficients.  Note 
that 
 

�
=

−+=−=
8

1

~1)(1)(~

i

i
is zazPzA ,  

where 

  �
=

−−=
8

1

~)(
i

i
is zazP  

 
is the transfer function of the short-term predictor block 240 in Figure 3. 
 
Block 218 performs further bandwidth expansion on the set of predictor coefficients { ia~ } using a 
bandwidth expansion factor of 1γ = 0.75.  The resulting bandwidth-expanded set of filter 
coefficients is given by 
 

i
i

i aa ~
1γ=′   ,  for i = 1, 2, …, 8. 

 
This bandwidth-expanded set of filter coefficients { ia′ } is used to update the coefficients of the 
weighted short-term synthesis filter block 221 in Figure 7 (to be discussed later).  This completes 
the description of short-term predictive analysis and quantization block 210 in Figure 3 and Figure 
5. 

 
 

3.6 Long-Term Linear Predictive Analysis (Pitch Extraction) 
 
In Figure 3, the long-term predictive analysis and quantization block 220 uses the short-term 
prediction residual signal d(n) of the current frame and its quantized version dq(n) in the previous 
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frames to determine the quantized values of the pitch period and the pitch predictor taps.  This 
block 220 is further expanded in Figure 7 below. 
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Figure 7  Long-term predictive analysis and quantization (block 220) 

 
 
Now refer to Figure 7.  Block 228 performs short-term prediction error filtering to get the short-
term prediction residual d(n) as follows. 
 

�
=

−+=
8

1

)(~)()(
i

i insansnd . 

 
The short-term prediction residual signal d(n) passes through the weighted short-term synthesis 
filter block 221, whose output is calculated as 
 

�
=

−′−=
8

1

)()()(
i

i indwandndw  
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The signal dw(n) is passed through a fixed low-pass filter block 222, which has a –3 dB cut off 
frequency at about 800 Hz.  A 4th-order elliptic filter is used for this purpose.  The transfer 
function of this low-pass filter is 
 

4321

4321

0.50039692.12495293.63373132.95802361
0.04330830.06871800.09910970.06871800.0433083

)( −−−−

−−−−

+−+−
+−+−=

zzzz
zzzz

zH lpf  

 
Block 223 down-samples the low-pass filtered signal to a sampling rate of 2 kHz.  This represents 
an 4:1 decimation.  
 
The first-stage pitch search block 224 then uses the decimated 2 kHz sampled signal dwd(n) to 
find a “coarse pitch period”, denoted as cpp in Figure 7.   The time lag represented by cpp is in 
terms of number of samples in the 2 kHz down-sampled signal dwd(n). A pitch analysis window 
of 15 ms is used.  The end of the pitch analysis window is aligned with the end of the current 
frame.  At a sampling rate of 2 kHz, 15 ms correspond to 30 samples.  Without loss of generality, 
let the index range of n = 1 to n = 30 correspond to the pitch analysis window for dwd(n).  Block 
224 first calculates the following values 
 

 �
=

−=
30

1

)()()(
n

kndwdndwdkc , 

[ ]�
=

−=
30

1

2)()(
n

kndwdkE , 


�
�

<−
≥

=
0)( if),(
0)( if),(

)(2
2

2

kckc

kckc
kc  

 
for all integers from k = MINPPD - 1 to k = MAXPPD + 1, where MINPPD and MAXPPD are the 
minimum and maximum pitch period in the decimated domain, respectively, MINPPD = 2 sample 
and MAXPPD = 34 samples.  Block 224 then searches through the range of k = MINPPD, 
MINPPD + 1, MINPPD + 2, …, MAXPPD to find all local peaks3 of the array { )(/)(2 kEkc } for 
which c(k) > 0.   Let pN  denote the number of such positive local peaks.  Let )( jk p , j =1, 2, …, 

pN  be the indices where ))((/))((2 jkEjkc pp  is a local peak and ))(( jkc p  > 0, and let 

)(...)2()1( pppp Nkkk <<< .  For convenience, the term )(/)(2 kEkc  will be referred to as the 

“normalized correlation square”. 
 
If pN = 0, the output coarse pitch period is set to cpp = MINPPD, and the processing of block 224 

is terminated.  If pN = 1, block 224 output is set to cpp = )1(pk , and the processing of block 224 is 

terminated.  
 

                                                           
3 A value is characterized as a local peak if both of the adjacent values are smaller. 
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If there are two or more local peaks ( 2≥pN ), then block 224 uses Algorithms 3.8.1, 3.8.2, 3.8.3, 

and 3.8.4 (to be described below), in that order, to determine the output coarse pitch period cpp. 
Variables calculated in the earlier algorithms will be carried over and used in the later algorithms.  
 
Block 224 first uses Algorithm 3.8.1 below to identify the largest quadratically interpolated peak 
around local peaks of the normalized correlation square )(/)(2 pp kEkc . Quadratic interpolation is 

performed for )( pkc , while linear interpolation is performed for )( pkE . Such interpolation is 

performed with the time resolution for the sampling rate of the input speech (8 kHz).  In the 
algorithm below, D denotes the decimation factor used when decimating dw(n) to dwd(n).  Thus, 
D = 4. 
 
 
Algorithm 3.8.1   Find largest quadratically interpolated peak around )(/)(2 pp kEkc : 

 
(i) Set c2max = -1, Emax = 1, and jmax = 0. 
 
(ii) For j =1, 2, …, pN , do the following 12 steps: 

1. Set [ ] ))(()1)(()1)((5.0 jkcjkcjkca ppp −−++=  

2. Set [ ])1)(()1)((5.0 −−+= jkcjkcb pp  

3. Set 0=ji  
4. Set ))(( jkEei p=  

5. Set ))((22 jkcmc p=  

6. Set ))(( jkEEm p=  

7. If )1)(()1)((2)1)(()1)((2 +−>−+ jkEjkcjkEjkc pppp , do the remaining part of step 7: 

DeijkE p ])1)(([ −+=∆  

For k = 1, 2, … , D/2, do the following indented part of step 7: 
))(()/()/( 2 jkcDkbDkaci p++=  

∆+← eiei  
If eimcEmci  )2()( 2 > , do the next three indented lines: 

 ji = k 
2)(2 cimc =  

Em = ei  
8. If )1)(()1)((2)1)(()1)((2 +−≤−+ jkEjkcjkEjkc pppp , do the remaining part of step 8: 

DeijkE p ])1)(([ −−=∆  

For k = -1, -2, … , -D/2, do the following indented part of step 8: 
))(()/()/( 2 jkcDkbDkaci p++=  

∆+← eiei  
If eimcEmci  )2()( 2 > , do the next three indented lines: 

 ji =  k 
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2)(2 cimc =  
Em = ei  

9. Set Djijkjlag p /)()( +=  

10. Set mcjic 2)(2 =  
11. Set EmjEi =)(  
12. If  c2m × Emax > c2max × Em, do the following three indented lines: 

jmax = j 
c2max = c2m 
Emax = Em 

 
(iii) Set the first candidate for coarse pitch period as )( jmaxkcpp p= . 

 
 
The symbol ←  indicates that the parameter on the left-hand side is being updated with the value 
on the right-hand side4. 

To avoid picking a coarse pitch period that is around an integer multiple of the true coarse pitch 
period, a search through the time lags corresponding to the local peaks of )(/)(2 pp kEkc  is 

performed to see if any of such time lags is close enough to the output coarse pitch period of block 
224 in the last frame, denoted as cpplast5.  If a time lag is within 25% of cpplast, it is considered 
close enough.  For all such time lags within 25% of cpplast, the corresponding quadratically 
interpolated peak values of the normalized correlation square )(/)(2 pp kEkc  are compared, and 

the interpolated time lag corresponding to the maximum normalized correlation square is selected 
for further consideration.  The following algorithm performs the task described above.  The 
interpolated arrays c2i( j) and Ei( j) calculated in Algorithm 3.8.1 above are used in this algorithm. 
 
 
Algorithm 3.8.2  Find the time lag maximizing interpolated )(/)(2 pp kEkc  among all time lags 

close to the output coarse pitch period of the last frame:  
 
(i)   Set index im = -1 
(ii)  Set c2m = -1 
(iii) Set Em = 1 
(iv) For j =1, 2, …, pN , do the following: 

If  cpplastcpplastjk p ×≤− 25.0  |)(| , do the following: 

If  )(    )(2 j Ei c2mEmjic ×>× , do the following three lines: 
im = j 

)(22 jicmc =  
)( jEiEm =  

 

                                                           
4 An equal sign is not applicable due to a potential mathematical conflict. 
5 For the first frame cpplast is initialized to 12. 
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Note that if there is no time lag )( jk p  within 25% of cpplast, then the value of the index im will 

remain at –1 after Algorithm 3.8.2 is performed.  If there are one or more time lags within 25% of 
cpplast, the index im corresponds to the largest normalized correlation square among such time 
lags. 
 
Next, block 224 determines whether an alternative time lag in the first half of the pitch range 
should be chosen as the output coarse pitch period. Basically, block 224 searches through all 
interpolated time lags lag( j) that are less than 16, and checks whether any of them has a large 
enough local peak of normalized correlation square near every integer multiple of it (including 
itself) up to 32.  If there are one or more such time lags satisfying this condition, the smallest of 
such qualified time lags is chosen as the output coarse pitch period of block 224.   
 
Again, variables calculated in Algorithms 3.8.1 and 3.8.2 above carry their final values over to 
Algorithm 3.8.3 below.  In the following, the parameter MPDTH is 0.065, and the threshold array 
MPTH(k) is given as MPTH(2) = 0.63, MPTH(3) = 0.48, MPTH(4) = 0.42, MPTH(5) = 0.36, and 
MPTH(k) = 0.30, for k > 5. 
 
 
Algorithm 3.8.3   Check whether an alternative time lag in the first half of the range of the coarse 
pitch period should be chosen as the output coarse pitch period: 
 
For j = 1, 2, 3, …, pN , in that order, do the following while lag( j) < 16: 

(i) If j � im, set threshold = 0.73; otherwise, set threshold = 0.4. 

(ii) If c2i( j) × Emax � threshold × c2max × Ei( j), disqualify this j, skip step (iii) for this j, 
increment j by 1 and go back to step (i).  

(iii)  If c2i( j) × Emax > threshold × c2max × Ei( j), do the following: 

a) For k = 2, 3, 4, … , do the following while k × lag( j) < 32: 

1.   s = k × lag( j)  

2.   a = (1 – MPDTH) s 

3.   b = (1 + MPDTH) s 

4.   Go through m = j+1,  j+2,  j+3, …, pN , in that order, and see if any of the 

time lags lag(m) is between a and b.  If none of them is between a and b, 
disqualify this j, stop step (iii), increment j by 1 and go back to step (i).   If 
there is at least one such m that satisfies a < lag(m) � b and c2i(m) × Emax 
> MPTH(k) × c2max × Ei(m), then it is considered that a large enough peak 
of the normalized correlation square is found in the neighborhood of the k-
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th integer multiple of lag( j); in this case, stop step (iii) a) 4., increment k 
by 1, and go back to step (iii) a) 1. 

      b) If step (iii) a) is completed without stopping prematurely, that is, if there is a large 
enough interpolated peak of the normalized correlation square within 
±100×MPDTH% of every integer multiple of lag( j) that is less than 32, then stop 
this algorithm and stop the operation of block 224, and set cpp = )( jk p  as the final 

output coarse pitch period of block 224.   

 

If Algorithm 3.8.3 above is completed without finding a qualified output coarse pitch period cpp, 
then block 224 examines the largest local peak of the normalized correlation square around the 
coarse pitch period of the last frame, found in Algorithm 3.8.2 above, and makes a final decision 
on the output coarse pitch period cpp using the following algorithm.  Algorithm 3.8.4 performs this 
final decision.  Again, variables calculated in Algorithms 3.8.1 and 3.8.2 above carry their final 
values over to Algorithm 3.8.4 below.  In the following, the parameters are SMDTH = 0.095 and 
LPTH1= 0.79. 

 

Algorithm 3.8.4:  Final decision of the output coarse pitch period 

(i) If im = -1, that is, if there is no large enough local peak of the normalized correlation square 
around the coarse pitch period of the last frame, then use the cpp calculated at the end of 
Algorithm 3.8.1 as the final output coarse pitch period of block 224, and exit this algorithm. 

(ii) If im = jmax, that is, if the largest local peak of the normalized correlation square around the 
coarse pitch period of the last frame is also the global maximum of all interpolated peaks of 
the normalized correlation square within this frame, then use the cpp calculated at the end of 
Algorithm 3.8.1 as the final output coarse pitch period of block 224, and exit this algorithm. 

(iii) If im < jmax, do the following indented part: 

If c2m × Emax > 0.43 × c2max × Em, do the following indented part of step (iii): 

a) If lag(im) > MAXPPD/2, set block 224 output cpp = )(imk p  and exit this 

algorithm. 

b) Otherwise, for k = 2, 3, 4, 5, do the following indented part: 

1. s = lag(jmax) / k 

2. a = (1 – SMDTH) s 

3. b = (1 + SMDTH) s 
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4. If lag(im) > a  and  lag(im) < b, set block 224 output cpp = )(imk p  and 

exit this algorithm. 

(iv) If im > jmax, do the following indented part: 

If c2m × Emax > LPTH1 × c2max × Em, set block 224 output cpp = )(imk p  and exit this 

algorithm. 

(v) If algorithm execution proceeds to here, none of the steps above have selected a final output 
coarse pitch period.  In this case, just accept the cpp calculated at the end of Algorithm 3.8.1 
as the final output coarse pitch period of block 224. 

 
 
Block 225 takes cpp as its input and performs a second-stage pitch period search in the 
undecimated signal domain to get a refined pitch period pp.  Block 225 first converts the coarse 
pitch period cpp to the undecimated signal domain by multiplying it by the decimation factor D, 
where D = 4. Then, it determines a search range for the refined pitch period around the value cpp 
× D.  The lower bound of the search range is lb = max(MINPP, cpp × D – D + 1) , where MINPP 
= 10 samples is the minimum pitch period.  The upper bound of the search range is ub = 
min(MAXPP, cpp × D + D – 1), where MAXPP is the maximum pitch period, which is 136 
samples.  
 
Block 225 maintains a signal buffer with a total of MAXPP + 1 + FRSZ samples, where FRSZ is 
the frame size, which is 40 samples.  The last FRSZ samples of this buffer are populated with the 
open-loop short-term prediction residual signal d(n) in the current frame.  The first MAXPP + 1 
samples are populated with the MAXPP + 1 samples of quantized version of d(n), denoted as 
dq(n), immediately preceding the current frame.  For convenience of writing equations later, the 
symbol dq(n) will be used to denote the entire buffer of  MAXPP + 1 + FRSZ samples, even 
though the last FRSZ samples are really d(n) samples.  Again, let the index range from n = 1 to n = 
FRSZ denotes the samples in the current frame. 
 
After the lower bound lb and upper bound ub of the pitch period search range are determined, 
block 225 calculates the following correlation and energy terms in the undecimated dq(n) signal 
domain for time lags k  within the search range [lb, ub]. 
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The time lag ],[ ublbk ∈  that maximizes the ratio )(~/)(~ 2 kEkc is chosen as the final refined pitch 
period.  That is, 
 



 - 26 - 

�
�

�
�
�

�
=

∈ )(~
)(~

 maxarg
2

],[ kE
kc

pp
ublbk

  . 

 
Once the refined pitch period pp is determined, it is encoded into the corresponding output pitch 
period index PPI, calculated as  
 

10−= ppPPI  . 
 
Possible values of PPI are all integers from 0 to 126.  Therefore, the refined pitch period pp is 
encoded into 7 bits, without any distortion.  The value of PPI = 127 is reserved for signaling 
purposes and therefore is not used by the codec. 
 
Block 225 also calculates ppt1, the optimal tap weight for a single-tap pitch predictor, as follows 
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In the degenerate case where )(~ ppE  = 0, ppt1 is set to zero.  Block 227 calculates the long-term 
noise feedback filter coefficient λ as follows. 
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3.7 Long-Term Predictor Parameter Quantization 
 
Pitch predictor taps quantizer block 226 quantizes the three pitch predictor taps to 5 bits using 
vector quantization.  The pitch predictor has a transfer function of 
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where pp is the pitch period calculated in Section 3.6. 
 
Rather than minimizing the mean-square error of the three taps 1b , 2b , and 3b  as in conventional 
VQ codebook search, block 226 finds from the VQ codebook the set of candidate pitch predictor 
taps that minimizes the pitch prediction residual energy in the current frame.  Using the same dq(n) 
buffer and time index convention as in block 225, and denoting the set of three taps corresponding 
to the j-th codevector, T

jjjj bbb ][ 321=b , as { 321 ,, jjj bbb }, we can express such pitch 

prediction residual energy as 
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The codevector is selected from a 3-dimensional codebook of 32 codevectors, { }3110 ,,, bbb � , 
listed in Appendix 4.  The codevector that minimizes the pitch prediction residual energy is 
selected.  The index of the selected codevector is given by 
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and the corresponding set of three quantized pitch predictor taps, denoted as },,{ 321 bbbppt =  in 
Figure 7, is given by 
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This completes the description of block 220, long-term predictive analysis and quantization. 
 

3.8 Excitation Gain Quantization 
 
There is one residual gain for each frame.  The unquantized residual gain is based on the pitch prediction residual of 
the frame and is quantized in an open-loop fashion in the base-2 logarithmic domain.  The quantization of the residual 
gain is part of the prediction residual quantizer block 230 in Figure 3.  Block 230 is further expanded in Figure 8.  All 
the operations in Figure 8 are performed on a frame-by-frame basis.  
 
Block 300 in Figure 8 calculates the pitch prediction residual signal, given by 
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where the same dq(n) buffer and time index convention of block 225 is used.  That is, the current frame of dq(n) for n 
= 1, 2, …, FRSZ is the unquantized open-loop short-term prediction residual signal d(n). 
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Figure 8  Prediction residual quantizer (block 230) 

 
 
 
Block 301 calculates the residual gain in the base-2 logarithmic domain.  First, the average power 
of the pitch prediction residual signal in the current frame, the m-th frame, is calculated as 
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The logarithmic gain (log-gain) of the current frame is calculated as 
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The long-term mean value of the log-gain is calculated off-line and stored in block 302.  This log-
gain mean value is lgmean = 11.45752.  The adder 303 calculates the mean-removed version of the 
log-gain as mrlg(m) = lg(m) - lgmean.  The MA log-gain predictor block 304 is an 8th-order FIR 
filter with its memory initialized to zero at the very first frame.  The coefficients of this log-gain 
predictor lgp(k), k = 1, 2, 3, …, 8, are fixed, as given below: 
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     lgp(1) = 0.7801514 
     lgp(2) = 0.7377625 
     lgp(3) = 0.6150818 
     lgp(4) = 0.5926208 
     lgp(5) = 0.4674072 
     lgp(6) = 0.3635864 
     lgp(7) = 0.2378540 
     lgp(8) = 0.1286926 
 
Block 304 calculates its output, the estimated log-gain, as  
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where GPO = 8 is the gain predictor order, and lgeq(m - k) is the quantized version of the log-gain 
prediction error at frame m – k.  
 
The adder 305 calculates the log-gain prediction error as  
 

lge(m) = mrlg(m) - elg(m). 
 
The scalar quantizer block 306 performs 4-bit scalar quantization of the resulting log-gain 
prediction error lge(m).  The codebook entries of this gain quantizer, along with the corresponding 
codebook indices, are listed in Appendix 5.  The operation of this quantizer is controlled by block 
310, whose purpose is to achieve a good trade-off between clear-channel performance and noisy-
channel performance of the excitation gain quantizer.  The operation of block 310 will be 
described later. 
 
For each temporarily quantized lgeq(m), the adders 307 and 308 together calculate the 
corresponding temporarily quantized log-gain as  
 

lgq(m) = lgeq(m) + elg(m) + lgmean 

 
Block 309 estimates the signal level based on the final quantized log-gain, to be determined later 
subject to the constraint imposed by block 310. Let lv(m) denote the output estimated signal level 
of block 309 at frame m.  Since the final value of lgq(m) has not been determined yet at this point, 
block 310 can only use the estimated signal level at the last frame, namely, lv(m – 1).  One way to 
think of this situation is that block 309 has a one-sample delay unit for its input lgq(m).   
 
At frame m, block 310 controls the quantization operation of block 306 based on lv(m – 1), lgq(m 
– 1), and lgq(m – 2)6. It uses an NG × NGC gain change threshold matrix T(i, j), i = 1, 2, …, NG, j 
= 1, 2, …, NGC to limit how high lgq(m) can go. The parameter values are NG = 18 and NGC = 
12.  The threshold matrix T(i, j) is given in Appendix 6. 
                                                           
6 The initial values of lgq(m – 1) and lgq(m – 2) are 0, i.e. lgq(0)= 0 and lgq(-1)= 0. 
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Block 310 and block 306 work together to perform the quantization of lge(m) in the following 
way. First, the row index into the threshold matrix T(i, j) is calculated as  
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where GLB = –24, and the symbol � �.  means “take the next larger integer” or “rounding to the 
nearest integer toward infinity”.  If i > NG, i is clipped to NG. If i < 1, i is clipped to 1. 
 
Second, the column index into the threshold matrix T(i, j) is calculated as  
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where GCLB = –8.  If j > NGC, j is clipped to NGC. If j < 1, j is clipped to 1. 
 
Third, with the row and column indices i and j calculated above, a gain quantization limit is 
calculated as  
 

GL = lgq(m – 1) + T(i, j) – elg(m) – lgmean 
 
Fourth, block 306 performs normal scalar quantization of lge(m) into its nearest neighbor in the 
quantizer codebook. If the resulting quantized value is not greater than GL, this quantized value is 
accepted as the final quantized log-gain prediction error lgeq(m), and the corresponding codebook 
index is the output gain index mGI .  On the other hand, if the quantized value is greater than GL, 
the next smaller gain quantizer codebook entry is compared with GL. If it is not greater than GL, it 
is accepted as the final output lgeq(m) of block 306, and the corresponding codebook index is 
accepted as mGI .  However, if it is still greater the GL, then block 306 keeps looking for the next 
smaller quantizer codebook entry (in descending order of codebook entry value), until it finds one 
that is not greater than GL. In such a search, the first one (that is, the largest one) that it finds to be 
no greater than GL is chosen as the final output lgeq(m) of block 306, and the corresponding 
codebook index is accepted as mGI .  In the rare occasion when all the gain quantizer codebook 
entries are greater than GL, then the smallest gain quantizer codebook entry is chosen as the final 
output lgeq(m) of block 306, and the corresponding codebook index (0 in this case) is chosen as 
the output mGI . The final gain quantizer codebook index mGI  is passed to the bit multiplexer 
block 295 of Figure 3.   
 
Once the quantized log-gain prediction error lgeq(m) is determined in this way, adders 307 and 
308 add elg(m) and lgmean to lgeq(m) to obtain the quantized log-gain lgq(m) as  
 

lgq(m) = lgeq(m) + elg(m) + lgmean 
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After this final quantized log-gain lgq(m) subject to the constraint imposed by block 310 is 
calculated, it is used by block 309 to update the estimated signal level lv(m). This value lv(m) is 
used by block 310 in the next frame (the (m + 1)-th frame). 
 
At frame m, after the final quantized log-gain lgq(m) is calculated, block 309 estimates the signal 
level using the following algorithm. The parameter values used are α = 4095/4096, β = 511/512, 
and γ = 255/256.  At codec initialization, the related variables are initialized as: lmax(m - 1) = -
100,  lmin(m - 1) = 100,  lmean(m - 1) = 12.5,  lv(m - 1)  = 17, and x(m - 1) =17. 
 
 
Algorithm for updating estimated long-term average signal level: 
 
(i) If lgq(m) > lmax(m - 1), set lmax(m) = lgq(m);  

  otherwise; set lmax(m) = lmean(m - 1) + α [lmax(m - 1) - lmean(m - 1)]. 
 

(ii) If lgq(m) < lmin(m - 1), set lmin(m) = lgq(m);  
        otherwise; set lmin(m) = lmean(m - 1) + α [lmin(m - 1) - lmean(m - 1)]. 
 
(iii) Set lmean(m) = β × lmean(m - 1) + (1 - β) [lmax(m) + lmin(m)]/2 . 
 
(iv) Set lth = lmean(m) + 0.2 [lmax(m) – lmean(m)] . 
 
(v) If lgq(m) > lth, set x(m) = γ × x(m - 1) + (1- γ)lgq(m), and set lv(m) = γ × lv(m - 1) + (1- γ) 

x(m); 
       Otherwise, set x(m) = x(m - 1) and lv(m) = lv(m - 1). 
 
 
Block 311 converts the quantized log-gain lgq(m) to the quantized gain gq(m) in the linear domain 
as follows. 
 

2
)(

2)(
mlgq

mgq =  
 
Block 312 scales the residual vector quantization (also called excitation VQ) codebook by simply 
multiplying every element of every codevector in the excitation VQ codebook by gq(m).  The 
resulting scaled codebook is then used by block 313 to perform Excitation VQ codebook search, as 
described in the next section.   
 

3.9 Excitation Vector Quantization 
 
The excitation VQ codebook has a sign-shape structure, with 1 bit for sign and 4 bits for shape.  
The vector dimension is 4. Thus, there are 16 independent shape codevectors stored in the 
codebook, but the negated version of each shape codevector (i.e., the mirror image with respect to 
the origin) is also a valid codevector for excitation VQ. The 16 shape codevectors, along with the 
corresponding codebook indices, are listed in Appendix 7.  
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Block 313 in Figure 8 performs the excitation VQ codebook search using the filter structure shown 
in Figure 9, which is essentially a subset of the encoder shown in Figure 3.  The only difference is 
that the prediction residual quantizer (block 230) in Figure 3 is replaced by block 248 in Figure 9, 
which is labeled as “scaled VQ codebook”.  This scaled VQ codebook is calculated in Section 3.8. 
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Figure 9  Filter structure used in excitation VQ codebook search 

 
 
The four filters of blocks 240, 250, 260, and 265 have transfer functions given by 
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where ia~ is the i-th coefficient of the quantized short-term prediction error filter; 
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where pp is the pitch period, and ib  is the i-th long-term predictor coefficient; 
 

pp
l zzN −=− λ1)( , 

 
where λ  is the long-term noise feedback filter coefficient calculated in Section 3.6. 
 
Using the filter structure in Figure 9, block 313 in Figure 8 performs excitation VQ codebook 
search one excitation vector at a time. Each excitation vector contains four samples. The excitation 
gain gq(m) is updated once a frame. Each frame contains 10 excitation vectors. Therefore, for each 
frame, the same scaled VQ codebook is used in 10 separate VQ codebook searches corresponding 
to the 10 excitation vectors in that frame.  
 
Let n = 1, 2, 3, 4 denote the sample time indices corresponding to the current four–dimensional 
excitation vector.  Before the excitation VQ codebook search for the current excitation vector 
starts, the high-pass filtered input s(n), n = 1, 2, 3, 4 has been calculated in Section 3.1.  In 
addition, before the VQ codebook search starts, the initial filter states (also called “filter memory”) 
of the four filters in Figure 9 (blocks 240, 250, 260, and 265) are also known.  All the other signals 
in Figure 9 are not determined yet for n = 1, 2, 3, 4. 

The basic ideas of the excitation VQ codebook search are explained below.  Refer to Figure 9. 
Block 248 stores the N scaled shape codevectors, where N = 16. Counting also the negated version 
of each scaled shape codevector, it is equivalent to having 2N scaled codevectors available for 
excitation VQ. From these 2N scaled codevectors, block 248 puts out one scaled codevector at a 
time as uq(n), n = 1, 2, 3, 4. With the initial filter memories in blocks 240, 250, 260, and 265 set to 
what were left after vector-quantizing the last excitation vector, this uq(n) vector then “drives” the 
rest of the filter structure until the corresponding quantization error vector q(n), n = 1, 2, 3, 4 is 
obtained.  The energy of this q(n) vector is calculated and stored.  This process is repeated for each 
of the 2N scaled codevectors, with the filter memories reset to their initial values before the 
process is repeated each time.  After all 2N codevectors have been tried, the scaled codevector that 
minimizes the energy of the quantization error vector q(n), n = 1, 2, 3, 4 is selected as the winning 
scaled codevector and is used as the VQ output vector.  The corresponding output VQ codebook 
index is a 5-bit index consisting of a sign bit as the most significant bit (MSB), followed by 4 
shape bits.  If the winning scaled codevector is a negated version of a scaled shape codevector, 
then the sign bit is 1, otherwise, the sign bit is 0. The 4 shape bits are simply the binary 
representation of the codebook index of the winning shape codevector, as defined in Appendix 7.  
Note that there are 10 such excitation codebook indices in a frame, since each frame has 10 
excitation vectors.  These 10 indices are grouped in an excitation codebook index array, denoted as 

)}10(),...,2(),1({ CICICICI = , where )(kCI  is the excitation codebook index for the k-th 
excitation vector in the current frame. This excitation codebook index array CI is passed to the bit 
multiplexer block 295 in Figure 3. 

Given a uq(n) vector (taking the value of one of the 2N scaled codevectors), the way to derive the 
corresponding energy of the q(n) vector is now described in more detail below.  First, block 260 
performs pitch prediction to produce the pitch-predicted vector ppv(n) as 
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Adder 285 then updates the dq(n) vector as 
 

dq(n) = uq(n) + ppv(n) , n = 1, 2, 3, 4. 
 

Next, block 240 and adder 245 together calculate short-term predicted speech vector sp(n) and 
quantized speech vector sq(n) as follows. 
 

For  n = 1, 2, 3, 4, calculate sp(n) and sq(n) as follows: 
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Then, block 250 and adders 290, 253, and 255 work together to update the v(n) vector as follows. 
 

For  n = 1, 2, 3, 4, calculate stnf(n) and v(n) as follows: 
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Finally, the corresponding q(n) vector is calculated as 
 

)()()()()( nuqppnqnppvnvnq −−−−= λ , n = 1, 2, 3, 4. 

 
The energy of the q(n) vector is calculated as 
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Such calculation from a given uq(n) vector to the corresponding energy term qE  is repeated 2N 

times for the 2N scaled VQ codevectors.  After the winning scaled codevector that minimizes 
the qE  term is selected, the filter memories of blocks 240, 250, 260, and 265 are updated by using 

the filter memories that were left after the calculation of the qE  term for that particular winning 

codevector was done.  Such updated filter memories become the initial filter memories used for 
the excitation VQ codebook search for the next excitation vector. 
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3.10 Bit Multiplexing 
 
The bit multiplexer block 295 in Figure 3 packs the five sets of indices LSPI, PPI, PPTI, GI, and 
CI into a single bit stream.  This bit stream is the output of the BraodVoice16 encoder.  It is passed 
to the communication channel.  
 
Figure 10 shows the BV16 bit stream format in each frame.  In Figure 10, the bit stream for the 
current frame is the shaded area in the middle. The bit stream for the last frame is on the left, while 
the bit stream for the next frame is on the right.  Although the bit stream of different frames may 
not be sent next to each other in a packet voice system, this illustration is meant to show that time 
goes from left to right, and the 30 side information bits consisting of LSPI, PPI, PPTI, and GI goes 
before the excitation codebook indices CI(k), k =1, 2, …, 10 when the bit stream is transmitted in a 
serial manner.  Note that for each index, the most significant bit (MSB) goes first (on the left), 
while the least significant bit (LSB) goes last. 
 
This completes the detailed description of the BV16 encoder. 
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Figure 10  Bit stream format 
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4 DETAILED DESCRIPTION OF THE BV16 DECODER 
 
This section gives a detailed description of each functional block in the BV16 decoder shown in 
Figure 4.  Those blocks or signals that have the same labels as their counterparts in the encoder of 
Figure 3 have the same meaning as those counterparts. 
 

4.1 Bit De-multiplexing 
 
The bit de-multiplexer block 400 takes one frame of input bit stream at a time, and de-multiplexes, 
or separates, the five sets of indices LSPI, PPI, PPTI, GI, and CI from the current frame of input 
bit stream. As described in Section 3 above, LSPI contains two indices: a 7-bit first-stage VQ 
index and a 7-bit second-stage VQ index.  PPI is a 7-bit pitch period index.  PPTI is a 5-bit pitch 
predictor tap VQ index.  GI is a 4-bit gain index, and CI contains ten 5-bit excitation VQ indices, 
each with 1 sign bit and 4 shape bits. 
 

4.2 Long-Term Predictor Parameter Decoding  
 
The long-term predictor parameter decoder (block 410) decodes the indices PPI and PPTI.  The 
pitch period is decoded from PPI as 
 

pp = PPI + 10 
 

Let { }3110 ,,, bbb �  be the 3-dimensional, 32-entry codebook used for pitch predictor tap VQ, as 
listed in Appendix 4. Let jb  be the j-th codevector in this codebook, where the subscript j is the 

codebook index listed in the first column of the table in Appendix 4.  The three pitch predictor 
taps 1b , 2b , and 3b  are decoded from PPTI as 
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4.3 Short-Term Predictor Parameter Decoding 
 
The short-term predictor parameter decoding takes place in block 420 of Figure 4.  Block 420 
receives the set of decoded LSP indices, { }21, LSPILSPILSPI = , from the bit de-multiplexer, 

block 400 in Figure 4.  First, block 420 reconstructs the LSP coefficients, }
~

{ il , from the LSP 
indices, and then it produces the coefficients of the short-term prediction error filter, }~{ ia , from 
the LSP coefficients according to the conversion procedure specified in Section 3.5.  
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Figure 11  Short-term predictor parameter decoder  (block 420) 

 
 
Block 420 of Figure 4 is expanded in Figure 11.  The reconstruction of the LSP coefficients from 
the LSP indices is the inverse of the LSP quantization, and many operations have equivalents in 
Section 3.4 and Figure 6.  The first-stage VQ is decoded in block 4204, and the second-stage split 
VQ is decoded in block 42016. 
 
In block 42016, the received index 2LSPI  is decoded into the sign index, 
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63,1
63,0

2

2
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I sg , 

 
and the shape vector index, 
 


�
�

≤
>−

=
63,
63,127

22
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LSPILSPI
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I sh . 

 
From the sign and shape indices the reconstructed output of the second stage VQ is calculated as 
 

)(
222

~ sh

sg

I
Is cbe = . 

 
From the index for the first stage VQ, block 4204 looks up the quantized first stage vector from 
the  codebook { })127(

1
)1(

1
)0(

11 ,,, cbcbcbCB �= , 
)(

121
1~ LSPIcbe = . 
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Adder 4205 performs the equivalent operation of Adder 21611 in Figure 6.  It adds the first-stage 
and second-stage vectors to obtain a first reconstructed prediction error vector, 
 

2221
)1(

2
~~~ eee += . 

 
Equivalent to block 2163 in Figure 6, block 4206 performs the 8th-order MA prediction of the 
mean-removed LSP vector according to 
 

[ ] 8 ,,2 ,1   ,)8(~)7(~)6(~)5(~)4(~)3(~)2(~)1(~ ˆ  
,2,2,2,2,2,2,2,2

T
,,1 �== ieeeeeeeee T

iiiiiiiiiLSPi p , 

 
where )(~

,2 ke i  and iLSP ,p  are defined in Section 3.4.  Adder 4207, equivalent to Adder 21612 in 

Figure 6, generates the predicted LSP vector by adding the mean LSP vector and the predicted 
mean-removed LSP vector, 
 

1ˆˆ ell += . 
 
Subsequently, adder 4208 adds the predicted LSP vector to the first reconstructed prediction error 
vector to obtain a first intermediate reconstructed LSP vector, 
 

)1(
2

)1( ~ˆ ell +=
�

. 
 
Adder 4209 subtracts the predicted LSP vector from a second intermediate reconstructed LSP )2(l

�
, 

to calculate a second reconstructed prediction error vector 
 

lle ˆ~ )2()2(
2 −=

�
  , 

 
to be used to update the MA predictor memory in the presence of bit-errors.  Block 42010 
determines the ordering property of the first 3 first intermediate reconstructed LSP coefficients, 
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This ordering property was enforced during the encoding operation of the constrained VQ of the 
second stage, block 21615 of Figure 6.  If the ordering is found to be preserved, the Transmission-
Error-Indicator, TEI , is set to 0 to indicate that no bit-errors in the LSP bits have been detected.  
Otherwise, if it is not preserved, the Transmission-Error-Indicator is set to 1 to indicate the likely 
presence of bit-errors in the LSP bits.   
 
If the Transmission-Error-Indicator is 0, the switches 42011 and 42012 are in the left position, 
and they route the first reconstructed prediction error vector )1(

2
~e  and the first intermediate 
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reconstructed LSP vector )1(l
�

 to the reconstructed prediction error vector 2
~e  and the intermediate 

reconstructed LSP vector l
�

, respectively.  Otherwise, if the Transmission-Error-Indicator is 1, the 
switches 42011 and 42012 are in the right position, and they route the second reconstructed 
prediction error vector )2(

2
~e and the second intermediate reconstructed LSP vector )2(l

�
 to the 

reconstructed prediction error vector 2
~e  and the intermediate reconstructed LSP vector l

�
, 

respectively.  Hence, the reconstructed prediction error vector and the intermediate reconstructed 
LSP vector are obtained as 
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respectively.  Block 42013 enforces LSP spacing; it is functionally identical to block 21614 in 
Figure 6, as specified in Section 3.4.  Block 42014 buffers the reconstructed LSP vector for future 
use in the presence of bit-errors.  The reconstructed LSP vector of the current frame becomes the 
second intermediate reconstructed LSP vector of the next frame, 
 

 )(~)1()2( kk ll =+
�

, 
 
where the additional parameter k  here represents the frame index of the current frame.  For the 
very first frame the second intermediate reconstructed LSP vector is initialized to 
 

[ ]T9/89/29/1)2(
�

�
=l  

 
The final step of the short-term predictor parameter decoding is to convert the reconstructed LSP 
coefficients to linear prediction coefficients.  This operation takes place in block 42015, which is 
functionally identical to block 217 of Figure 5, described in Section 3.5. 
 

4.4 Excitation Gain Decoding 
 
The excitation gain decoder is shown in Figure 12.  It is part of block 430 in Figure 4.  It decodes 
the gain index in GI into the corresponding decoded frame excitation gain gq(m) in the linear 
domain.  All operations in Figure 12 are performed on a frame-by-frame basis. 
 
Refer to Figure 12.  Let m be the frame index of the current frame, and assume the same 
convention for the frame index m as in Section 3.8.  Block 501 decodes the 4-bit gain index mGI  
into the log-gain prediction error lgeq(m) using the codebook in Appendix 5.  Switch 502 is 
normally in the upper position, connecting the output of block 501 to the input of block 503.  
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Then, the MA log-gain predictor (block 503) calculates the estimated log-gain for the current 
frame as  
 

�
=

−=
GPO

k

kmlgeqklgpmelg
1

)()()(  , 

 
where GPO = 8, and lgp(k), k = 1, 2, …, GPO are the MA log-gain predictor coefficients given in Section 3.8. 
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Figure 12  Excitation gain decoder 

 
 

Block 504 holds the long-term average log-gain value lgmean = 11.45752.  Adders 505 and 506 
adds elg(m) and lgmean, respectively, to lgeq(m), resulting in the temporarily decoded log-gain of 
 

)(mqlg ′ = lgeq(m) + elg(m) + lgmean . 
 

Block 507 is functionally identical to block 309 in Figure 8, described in Section 3.8.  It is 
important to note that equivalently to the encoder, the log-gain value passed to block 507 for 
updating its estimate of the long-term average signal level is the final value of the decoded log-
gain lgq(m), i.e. after the threshold check of block 508 and potential log-gain extrapolation and 
substitution of block 509, respectively, as described below.   
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Block 508 calculates the row and column indices i and j into the threshold matrix T(i, j) in the 
same way as block 310 in Figure 8. Namely, the row index is calculated as  
 

��

�
��

� −−−−=
2

)1()1( GLBmlvmlgq
i  , 

 
where GLB = –24.  If i > NG, i is clipped to NG. If i < 1, i is clipped to 1. The column index is 
calculated as  
 

��

�
��

� −−−−=
2

)2()1( GCLBmlgqmlgq
j  , 

 
where GCLB = –8.  If j > NGC, j is clipped to NGC. If j < 1, j is clipped to 1. 
 
Block 508 controls the actions of block 509 and switch 502 in the following way.  If mGI = 0 or 

)(mqlg ′ � T(i, j) + lgq(m – 1), then switch 502 is in the upper position, block 509 determines the 
final decoded log-gain as 
 

)()( mqlgmlgq ′=  , 
 
and the filter memory in the MA log-gain predictor (block 503) is updated by shifting the old 
memory values by one position, and then assigning lgeq(m) to the newest position of the filter 
memory. 
 
If, on the other hand, mGI > 0 and lgq(m) > T(i, j) + lgq(m – 1), then the temporarily decoded log-
gain )(mqlg ′  is discarded, block 509 determines the final decoded log-gain as 
 

)1()( −= mlgqmlgq  
 
(by extrapolating the decoded log-gain of the last sub-frame); furthermore, switch 502 is moved to 
the lower position, adders 511 and 512 subtract lgmean and elg(m), respectively, from )(mlgq  to 
get 
 

)()()( melglgmeanmlgqmqlge −−=′ , 
 

and this )(mqlge ′ is used to update the newest position of the filter memory of block 503, after the 
old memory values are shifted by one position.   
 
Once the final decoded log-gain lgq(m) subject to the constraint imposed by block 509 is 
determined as described above, it is used by block 508 to update the estimated signal level lv(m). 
This value lv(m) is then used by block 509 in the next frame (the (m + 1)-th frame). 
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Block 510 converts final decoded log-gain lgq(m) to the linear domain as 2
)(

2)(
mlgq

mgq =  . 
 
 

4.5 Excitation VQ Decoding and Scaling 
 
The excitation codebook index array CI of each frame contains 10 excitation codebook indices, 
CI(k), k = 1, …, 10, each containing 1 sign bit and 4 shape bits.  The excitation vectors are 
decoded vector-by-vector.   
 
Let gq(m) denote the decoded excitation gain in the linear domain for the current frame. In 
addition, let CI(k) denote the received excitation codebook index of the current excitation vector 
that needs to be decoded. This index assumes a value between 0 and 31. The most significant bit 
of this index is the sign bit.  Therefore, if CI(k) < 16, the sign bit is 0; otherwise, the sign bit is 1.  
Let ),(nc j  n = 1, 2, 3, 4 represent the j-th shape codevector in Appendix 7, with a shape codebook 

index of j.  Furthermore, without loss of generality, let n = 1, 2, 3, 4 correspond to the sample time 
indices of the current vector. Then, in Figure 4, the decoded and scaled excitation vector, or uq(n), 
n = 1, 2, 3, 4, is obtained as 
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4.6 Long-Term Synthesis Filtering 
 
Let n = 1, 2, …, FRSZ correspond to the sample time indices of the current frame. In Figure 4, the 
long-term synthesis filter (block 455, consisting of block 440 and adder 450 in a feedback loop) 
performs sample-by-sample long-term synthesis filtering as follows. 
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i ippndqbnuqndq , n = 1, 2, … FRSZ. 

 

4.7 Short-Term Synthesis Filtering 
 
The short-term synthesis filter (block 475, consisting of block 460 and adder 470 in a feedback 
loop) performs sample-by-sample short-term synthesis filtering to obtain the output signal as 
follows. 
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i insqandqnsq , n = 1, 2, … FRSZ. 
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4.8 Example Postfilter 
 
This document specifies codec components that need to be clearly specified in order to foster inter-
operability.  Decoder postfiltering is not a mandatory component of this BV16 Codec 
Specification, since such postfiltering does not affect bit-stream compatibility or encoder-decoder 
inter-operability.  However, an example postfilter is described in this section for reference 
purposes only.  An implementer of BV16 can utilize other postfilters without affecting inter-
operability.   
 
The example postfilter is an all-zero single tap pitch postfilter.  The input to the pitch postfilter is 
the pitch period, pp, and the output signal, sq(n), from the short-term synthesis filter7.  In principle, 
the postfiltering is given by 
 

)( )2()( )1()( pppfnsqbnsqbnspf pfpf −+= , n = 1, 2, … FRSZ, 

 
where spf(n) denotes the postfiltered output signal and pppf is the pitch period used for the pitch 
postfilter. 
 
First the pitch period of the decoder is refined by selecting the lag, pppf, corresponding to the 
highest squared normalized pitch correlation of the output signal in a ±4 sample range of the pitch 
period, pp, i.e. the lag, pppf, that maximizes, 
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where ppmin = pp-4 and ppmax = pp+4, with the following constraints: 
 

if ppmin < MINPP: ppmin = MINPP, ppmax = MINPP+8, and similarly 
 

if ppmax > MAXPP: ppmax = MAXPP, ppmin = MAXPP-8. 
 
With the refined lag the normalized pitch correlation is calculated as 
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7 At the first frame, the history of sq(n) is set to zero. 
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If the numerator is less than zero or the denominator is zero, the normalized pitch correlation is set 
to zero, Cpf = 0.  Next, a running mean of the normalized pitch correlation is calculated as 
 

CpfmCrmmCrm  25.0)1( 75.0)( +−= , 
 
where Crm(m) is the running mean of the current frame, and Crm(m-1) is the running mean of the 
previous frame8.  Based on the normalized pitch correlation and the running mean of the 
normalized pitch correlation, the initial pitch postfilter tap is calculated as 
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Subsequently, a scaling factor is calculated as 
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It is set to one if either the numerator or the denominator is zero.  The two pitch postfilter 
coefficients of the current (m-th) frame is calculated as 
 

pfmpf gb =)1(,  and pfpfmpf agb  )2(, = . 

 
In practice, for the first Lint=20 samples of each frame, the impulse responses of adjacent pitch 
postfilters are interpolated while the pitch postfilter of the current frame is used for the remaining 
samples of the frame: 
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where pppfm and pppfm-1 are the refined pitch period of the current and previous frames, 
respectively, and 
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8 For the first frame, running mean of the previous frame is set to zero, i.e. Crm(0)=0. 
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A linear interpolation between adjacent pitch postfilters9 is used: 
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4.9 Example Packet Loss Concealment 
 
Similar to decoder postfiltering, packet loss concealment is not a mandatory component of this 
BV16 Codec Specification, since packet lost concealment does not affect bit-stream compatibility 
or encoder-decoder inter-operability.  However, an example packet loss concealment technique is 
described in this section for reference purposes only.  An implementer of BV16 can utilize other 
packet loss concealment techniques without affecting inter-operability. 
 
The example packet loss concealment technique utilizes the synthesis model of the decoder.  In 
principle, all side information of the previous frame is repeated while the excitation of the 
cascaded long-term and short-term synthesis filters is from a random source, scaled to a proper 
level.  Hence, with the additional index m denoting the m-th frame, during packet-loss:  
 

• The pitch period, pp, is set to the pitch period of the last frame10: 
1−= mpppp . 

• The pitch taps, b1 b2 and b3, are set to the pitch taps of the last frame11. 
imi bb ,1−= , i=1,2,3. 

• The short-term synthesis filter coefficients, 8,...,1 ,~ =iai , are set to those of the last frame12: 

imi aa ,1
~~

−= , i=1,…,8. 

• A properly scaled random sequence is used as long-term synthesis filter excitation, uq(n), n 
= 1, 2, … FRSZ. 

 
The speech synthesis of the bad frame (part of lost packet) now takes place exactly as specified in 
Sections 4.6, 4.7, and 4.8 if the example postfilter is included. 
 
The random sequence is scaled according to 
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where r(n), n = 1, 2, … FRSZ, is a random sequence, Em-1 is in principle the energy of the long-
term synthesis filter excitation of the previous frame13, and the scaling factor, gplc, is calculated as 
detailed below. 
                                                           
9 For the first frame, the parameters of the previous pitch postfilter are set to pppf0=100, b0(1)=1, b0(2)=0. 
10 If the first frame is lost a value of 100 is used for the pitch period. 
11 If the first frame is lost the pitch taps are set to zero. 
12 If the first frame is lost the short-term filter coefficients are set to zero. 
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During good frames an estimate of periodicity is updated as 
 

bsperper mm  5.0 5.0 1 += − , 
 
where bs is the sum of the three pitch taps clipped at a lower threshold of zero and an upper 
threshold of one14, while it is maintained during bad frames: 1−= mm perper .  Based on the 
periodicity the scaling factor is calculated as 
 

9.1 2 1 +−= −mplc perg  

 
with gplc clipped at a lower threshold of 0.1 and an upper threshold of 0.9. 
 
After synthesis of the signal output of a lost frame, memories of predictive quantizers are updated.   
 
The memory of the inverse LSP quantizer is updated with 
 

iiimi IeIe −−= − ,1,1,2 ˆ~~ ,  i=1,2,…,8, 

 
where ie ,1̂ is given in Section 4.3, iI  in Section 3.4, and imI ,1

~
− denotes the i-th LSP coefficients of 

the (m-1)-th frame (as decoded according to Section 4.3 for a good frame, or repeated for a bad 
frame). 
 
The memory of the inverse gain quantizer is updated with 
 

)()()( melglgmeanmlgqmlgeq −−= , 
 

where )(melg  is given in Section 4.4,  lgmean in Section 3.8, and lgq(m) is calculated as  
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The level estimation for a bad frame is updated exactly as for a good frame, see Section 4.4. 
 
At the end of a good frame (after synthesis of the output) the estimate of periodicity is estimated as 
explained above, and the energy of the long-term synthesis filter excitation is updated as 
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13 The energy is initialized to zero, i.e. E0=0. 
14 The estimate of periodicity is initialized to zero, i.e. per0=0. 
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At the end of the processing of a bad frame (after synthesis of the output and update of predictive 
quantizers), the energy of the long-term synthesis filter excitation and the long-term synthesis filter 
coefficients are scaled down when 8 or more consecutive frames are lost: 
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where Nclf is the number of consecutive lost frames, and the scaling, Nclfβ , is given by 
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This will gradually mute the output signal when consecutive packets are lost for an extended 
period of time. 
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APPENDIX 1: GRID FOR LPC TO LSP CONVERSION 

 
Grid point Grid value 

0 0.9999390 
1 0.9935608 
2 0.9848633 
3 0.9725342 
4 0.9577942 
5 0.9409180 
6 0.9215393 
7 0.8995972 
8 0.8753662 
9 0.8487854 

10 0.8198242 
11 0.7887573 
12 0.7558899 
13 0.7213440 
14 0.6853943 
15 0.6481323 
16 0.6101379 
17 0.5709839 
18 0.5300903 
19 0.4882507 
20 0.4447632 
21 0.3993530 
22 0.3531189 
23 0.3058167 
24 0.2585754 
25 0.2109680 
26 0.1630859 
27 0.1148682 
28 0.0657349 
29 0.0161438 
30 -0.0335693 
31 -0.0830994 
32 -0.1319580 
33 -0.1804199 
34 -0.2279663 
35 -0.2751465 
36 -0.3224487 
37 -0.3693237 
38 -0.4155884 
39 -0.4604187 
40 -0.5034180 
41 -0.5446472 
42 -0.5848999 
43 -0.6235962 
44 -0.6612244 
45 -0.6979980 
46 -0.7336731 
47 -0.7675781 
48 -0.7998962 
49 -0.8302002 
50 -0.8584290 
51 -0.8842468 
52 -0.9077148 
53 -0.9288635 
54 -0.9472046 
55 -0.9635010 
56 -0.9772034 
57 -0.9883118 
58 -0.9955139 
59 -0.9999390 
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APPENDIX 2: FIRST-STAGE LSP CODEBOOK 

Index Element 1 Element 2 Element 3 Element 4 Element 5 Element 6 Element 7 Element 8 
0 -0.0059814 -0.0075378 -0.0113449 -0.0002670 -0.0103607 -0.0055771  0.0091400 -0.0032730 
1 -0.0053177 -0.0019302  0.0037079 -0.0106049 -0.0021820 -0.0003815  0.0100098  0.0037460 
2 -0.0009308 -0.0001831 -0.0040741 -0.0110474 -0.0238800 -0.0042191  0.0014114 -0.0061035 
3  0.0031128  0.0013046  0.0076218 -0.0042191 -0.0073776 -0.0045013 -0.0051651  0.0158539 
4 -0.0023270 -0.0014496 -0.0036392  0.0071030  0.0026093 -0.0172119 -0.0009613 -0.0059662 
5 -0.0081329 -0.0077362  0.0091782  0.0048294  0.0101395  0.0007172  0.0030212  0.0013885 
6  0.0006104  0.0040817 -0.0010300 -0.0081787 -0.0126343 -0.0218582 -0.0007629 -0.0092163 
7  0.0090561  0.0081329  0.0096436  0.0009613  0.0011063 -0.0042572  0.0038910 -0.0034485 
8 -0.0044785 -0.0070572 -0.0158615  0.0019913  0.0087204  0.0005951  0.0022583 -0.0074539 
9  0.0042114  0.0052719 -0.0061417  0.0057449  0.0057068 -0.0022202  0.0133896  0.0077362 
10 -0.0039902 -0.0037308 -0.0103226 -0.0064774 -0.0049667 -0.0043411 -0.0066986 -0.0186844 
11  0.0035553  0.0042877  0.0199356  0.0078812  0.0031281 -0.0082245 -0.0142746 -0.0015106 
12  0.0032806  0.0013351 -0.0004501  0.0149384  0.0076141  0.0033264 -0.0038376 -0.0110245 
13  0.0010910  0.0050964  0.0128632  0.0091553  0.0088348  0.0151443  0.0096664  0.0043411 
14 -0.0047226 -0.0046234  0.0096664  0.0042496 -0.0064697 -0.0039902 -0.0056915 -0.0162430 
15 -0.0000229  0.0000000  0.0265427  0.0128021  0.0049896  0.0054398  0.0008698 -0.0047150 
16 -0.0074081 -0.0089569 -0.0175552 -0.0174561 -0.0057831 -0.0148010  0.0076141  0.0079803 
17 -0.0019760 -0.0027161 -0.0077667 -0.0104675 -0.0090866 -0.0027542  0.0306244  0.0160751 
18 -0.0044403 -0.0059509 -0.0128784 -0.0197525 -0.0304413 -0.0161133  0.0037613  0.0098114 
19 -0.0001907  0.0020599  0.0160294  0.0045853 -0.0091476 -0.0058670  0.0226593  0.0125122 
20 -0.0057526 -0.0060425 -0.0029755 -0.0092010  0.0054550 -0.0046692 -0.0137711 -0.0035477 
21 -0.0022125 -0.0046158 -0.0083923  0.0117264  0.0248260  0.0126343  0.0082626  0.0001907 
22 -0.0016632  0.0000076 -0.0051346 -0.0084305 -0.0128784 -0.0196915 -0.0223007 -0.0168076 
23  0.0046158  0.0114517  0.0148926  0.0092087  0.0188599 -0.0058212  0.0079727  0.0046082 
24 -0.0006714 -0.0006714 -0.0119095 -0.0186539  0.0112305 -0.0053024  0.0070267 -0.0016022 
25  0.0114136  0.0131760  0.0045929 -0.0096207  0.0138092  0.0076675  0.0137863  0.0142441 
26  0.0089951  0.0114975 -0.0246811 -0.0092545 -0.0067444 -0.0065155 -0.0055161 -0.0072098 
27  0.0116730  0.0303574  0.0396042  0.0238495  0.0113144  0.0006714 -0.0080719  0.0067749 
28  0.0061035  0.0072174  0.0028000 -0.0075989  0.0156174  0.0043716 -0.0073624 -0.0141525 
29  0.0069580  0.0107727  0.0140839  0.0036621  0.0325394  0.0216980  0.0056152  0.0061188 
30  0.0065002  0.0056458  0.0067139  0.0007935  0.0008087 -0.0099030 -0.0182724 -0.0288086 
31  0.0147324  0.0161285  0.0276260  0.0238800  0.0214386  0.0131302  0.0047607 -0.0047836 
32 -0.0083008 -0.0135345 -0.0167313 -0.0003433 -0.0090408 -0.0008469 -0.0017624  0.0161667 
33 -0.0031662 -0.0056992 -0.0011444  0.0063324 -0.0090790  0.0121918  0.0022354  0.0048523 
34 -0.0050354 -0.0077744 -0.0103531 -0.0145035 -0.0191193 -0.0035934 -0.0159454  0.0042343 
35  0.0078888  0.0054169  0.0038223 -0.0016632 -0.0109177 -0.0039520 -0.0170212 -0.0018616 
36 -0.0038910 -0.0082321 -0.0112686  0.0100861 -0.0043945 -0.0049820 -0.0151062  0.0018616 
37 -0.0030060 -0.0051117  0.0013962  0.0250015 -0.0003738 -0.0045395  0.0120697  0.0071411 
38 -0.0017471 -0.0031509 -0.0094299 -0.0154495 -0.0188980 -0.0264816 -0.0149384  0.0071030 
39  0.0070190  0.0111084  0.0142746  0.0070648 -0.0085373 -0.0219345  0.0042267  0.0029221 
40 -0.0084000 -0.0120621 -0.0198364 -0.0063629  0.0110550  0.0045700  0.0082169  0.0152664 
41 -0.0012970 -0.0023575  0.0041809  0.0055084  0.0066299  0.0041122  0.0141602  0.0310822 
42 -0.0008011  0.0027390 -0.0027847 -0.0278168 -0.0051651 -0.0065536 -0.0094833 -0.0070724 
43  0.0257950  0.0224075  0.0190277  0.0123291  0.0018692 -0.0124512 -0.0261765 -0.0093994 
44  0.0024414  0.0011520 -0.0020218  0.0018616  0.0149918  0.0050735 -0.0103073  0.0105972 
45  0.0045166  0.0086136  0.0284348  0.0160980  0.0127563  0.0124054  0.0261307  0.0190277 
46 -0.0064392 -0.0072556  0.0081406  0.0079956 -0.0225372 -0.0159760 -0.0059891 -0.0012741 
47 -0.0008316  0.0018845  0.0423431  0.0217514  0.0008698 -0.0041199  0.0085602  0.0102158 
48 -0.0227127 -0.0309753 -0.0029831 -0.0045471 -0.0044708 -0.0003662  0.0006409  0.0024567 
49  0.0003204 -0.0007782  0.0007553 -0.0061646 -0.0099792  0.0272598  0.0179977  0.0155029 
50 -0.0022583 -0.0034180 -0.0074692 -0.0160370 -0.0401917 -0.0083847 -0.0189896 -0.0101929 
51  0.0022202  0.0045013  0.0243607  0.0083466 -0.0246048  0.0046997 -0.0021439  0.0023041 
52 -0.0029678 -0.0052338  0.0025406  0.0110321  0.0029221 -0.0056763 -0.0311356 -0.0081024 
53  0.0019226  0.0010529  0.0046844  0.0322113  0.0202255  0.0150070  0.0069733  0.0021973 
54  0.0002441  0.0029984  0.0021286  0.0054932 -0.0150223 -0.0383453 -0.0137787 -0.0153046 
55  0.0024185  0.0418625  0.0316925  0.0256805  0.0141296  0.0077591  0.0154495  0.0091095 
56 -0.0076904 -0.0126266 -0.0251846 -0.0261307  0.0040588  0.0132675  0.0196609  0.0226059 
57  0.0066910  0.0088730  0.0157623  0.0102997  0.0193558  0.0230255  0.0201874  0.0446930 
58 -0.0050049 -0.0121231 -0.0460205 -0.0182266 -0.0260468 -0.0259018 -0.0209122 -0.0175323 
59  0.0057602  0.0139847  0.0579147  0.0351944 -0.0040665 -0.0186386 -0.0284729 -0.0171432 
60  0.0025711  0.0053101  0.0119553  0.0070419  0.0170135  0.0213165 -0.0242462 -0.0078735 
61  0.0176849  0.0341110  0.0360947  0.0325394  0.0362167  0.0317612  0.0233765  0.0178757 
62  0.0018082  0.0054245  0.0223770  0.0096283 -0.0214233 -0.0161209 -0.0263824 -0.0237961 
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63  0.0040436  0.0186539  0.0682678  0.0692520  0.0290146  0.0145493  0.0086975  0.0001144 
64 -0.0073166 -0.0097580 -0.0165558 -0.0164719 -0.0054932  0.0104904  0.0003052 -0.0026093 
65  0.0012283  0.0010452 -0.0012741 -0.0147095  0.0082169  0.0179520  0.0043182  0.0050583 
66 -0.0025101 -0.0054626 -0.0107498 -0.0207672 -0.0277328  0.0124207  0.0075836  0.0025177 
67  0.0082932  0.0077057  0.0032272 -0.0084229 -0.0114975  0.0151215  0.0005341 -0.0019226 
68 -0.0067825 -0.0089111 -0.0184479  0.0017242 -0.0064545 -0.0217209 -0.0024490 -0.0019455 
69 -0.0006104 -0.0049820  0.0121994  0.0176392  0.0069962  0.0066605 -0.0074310  0.0169830 
70 -0.0000534  0.0012283 -0.0020981 -0.0062180 -0.0171661 -0.0240707  0.0151367  0.0081100 
71  0.0176697  0.0149918  0.0140686  0.0097809  0.0034790  0.0105209  0.0014572  0.0027390 
72 -0.0064240 -0.0083618 -0.0160828 -0.0105820  0.0212021  0.0123367 -0.0018921 -0.0081329 
73 -0.0053406 -0.0044250 -0.0000076  0.0004807  0.0158310  0.0097198  0.0251846  0.0064545 
74 -0.0037766 -0.0038528 -0.0154724 -0.0229874  0.0008011  0.0042114 -0.0171432 -0.0225220 
75  0.0014191  0.0062637  0.0232925  0.0124817  0.0117035  0.0014648 -0.0106812 -0.0250015 
76 -0.0061264 -0.0116348 -0.0150681  0.0248032  0.0146561  0.0051270 -0.0047836 -0.0073013 
77 -0.0086670 -0.0107346  0.0193634  0.0210648  0.0206528  0.0170822  0.0147781  0.0120239 
78 -0.0034256 -0.0035858 -0.0015869 -0.0019073 -0.0142975  0.0131302 -0.0151138 -0.0197067 
79 -0.0020447  0.0006714  0.0414658  0.0249710  0.0197296  0.0175705 -0.0016098  0.0003967 
80 -0.0080795 -0.0119095 -0.0216980 -0.0280533 -0.0105896 -0.0002365 -0.0009079  0.0161667 
81  0.0123291  0.0056229 -0.0075455 -0.0211258 -0.0128326  0.0001068  0.0061417  0.0149689 
82 -0.0029373 -0.0080795 -0.0181351 -0.0304947 -0.0477219  0.0010223  0.0070724  0.0156937 
83  0.0141983  0.0176315  0.0056763 -0.0044098 -0.0164795  0.0085678  0.0159912  0.0168228 
84 -0.0061722 -0.0097046 -0.0205307 -0.0133286  0.0058441 -0.0068512 -0.0228195  0.0043335 
85 -0.0051880 -0.0111084 -0.0178680  0.0235138  0.0195084  0.0178680  0.0160370  0.0151443 
86  0.0019531 -0.0010757 -0.0006256 -0.0082626 -0.0146942 -0.0227509 -0.0364304  0.0097427 
87  0.0283661  0.0346222  0.0130768  0.0101700  0.0174866  0.0197144  0.0173874  0.0145874 
88 -0.0066528 -0.0088272 -0.0246811 -0.0331345  0.0143738  0.0057602 -0.0002747 -0.0007629 
89  0.0018539  0.0035934 -0.0006332 -0.0124893  0.0327225  0.0176163  0.0233994  0.0193710 
90 -0.0135727 -0.0340042 -0.0894012 -0.0189590 -0.0093231 -0.0084381 -0.0090332 -0.0088577 
91  0.0099640  0.0462646  0.0453796  0.0276489  0.0160370  0.0025406 -0.0106049 -0.0192184 
92 -0.0034714 -0.0054245 -0.0114441  0.0039444  0.0178375  0.0054550 -0.0171051 -0.0267639 
93 -0.0011978  0.0003204  0.0082169  0.0209274  0.0536499  0.0358963  0.0197830  0.0092850 
94  0.0023346  0.0034943 -0.0014572  0.0014343 -0.0054932 -0.0127716 -0.0328522 -0.0487366 
95  0.0088501  0.0262756  0.0493164  0.0377655  0.0499496  0.0279236 -0.0018158 -0.0138168 
96 -0.0091782 -0.0182266 -0.0430679  0.0019302  0.0016556  0.0016785 -0.0005188 -0.0010605 
97 -0.0042267 -0.0044327 -0.0011826  0.0068283  0.0034714  0.0279465  0.0020370 -0.0107651 
98 -0.0088577 -0.0077744 -0.0206451 -0.0217667 -0.0166931 -0.0166321 -0.0041122 -0.0111160 
99  0.0114822  0.0137863  0.0051422  0.0017090 -0.0126801 -0.0010223 -0.0035172 -0.0167770 
100 -0.0047989 -0.0082703 -0.0190659  0.0137558 -0.0056305 -0.0116806 -0.0150452 -0.0211258 
101 -0.0013351 -0.0021439  0.0114136  0.0434952  0.0037308 -0.0042496 -0.0063400 -0.0076370 
102 -0.0027390 -0.0010986 -0.0103989 -0.0135803 -0.0289612 -0.0440826  0.0028915  0.0004730 
103  0.0343170  0.0352859  0.0218124  0.0093842 -0.0054703 -0.0086594  0.0062637  0.0050507 
104 -0.0057678 -0.0092545 -0.0224991 -0.0150681  0.0306778  0.0213089  0.0150299  0.0065155 
105 -0.0029221 -0.0022583  0.0017624  0.0089951  0.0164185  0.0172653  0.0484390  0.0271988 
106 -0.0026627  0.0002594 -0.0224304 -0.0537415 -0.0119095 -0.0128479 -0.0069809 -0.0067749 
107  0.0076294  0.0422287  0.0109787  0.0002823  0.0060196  0.0020523 -0.0027847 -0.0075226 
108 -0.0038986 -0.0030670  0.0042572  0.0127869  0.0384750  0.0027542 -0.0117798 -0.0054169 
109 -0.0036087  0.0035782  0.0424576  0.0331345  0.0332794  0.0281830  0.0280609  0.0207291 
110  0.0046082  0.0080490  0.0111084 -0.0065918 -0.0519485 -0.0157547 -0.0019455 -0.0029144 
111  0.0034485  0.0175858  0.0821762  0.0272980  0.0156860  0.0159531  0.0184174  0.0143356 
112 -0.0314102 -0.0573120 -0.0361557 -0.0185471 -0.0215912 -0.0093765 -0.0097656 -0.0018997 
113  0.0007401  0.0014343  0.0100021  0.0084229  0.0087585  0.0477676  0.0178299  0.0107193 
114 -0.0015106 -0.0081024 -0.0302200 -0.0461807 -0.0730972 -0.0303497 -0.0201721 -0.0060349 
115  0.0099411  0.0259781  0.0389252 -0.0061798 -0.0111618  0.0061264  0.0084991 -0.0016098 
116 -0.0020447 -0.0056534 -0.0065460 -0.0004425 -0.0104218 -0.0178070 -0.0585556 -0.0127106 
117 -0.0028152 -0.0029221  0.0108337  0.0616455  0.0292282  0.0216827  0.0112686  0.0042725 
118  0.0102158  0.0152206 -0.0010757 -0.0186920 -0.0433731 -0.0584030 -0.0330887 -0.0182495 
119  0.0341263  0.0759430  0.0464096  0.0330963  0.0261612  0.0209045  0.0158920  0.0113602 
120 -0.0082016 -0.0157471 -0.0547714 -0.0575638  0.0062866  0.0029297  0.0097733  0.0060959 
121  0.0022659  0.0080261  0.0222321  0.0229797  0.0417252  0.0456924  0.0649796  0.0428009 
122 -0.0109406 -0.0265427 -0.0845337 -0.0739746 -0.0471725 -0.0384445 -0.0217361 -0.0125504 
123  0.0284500  0.0826721  0.1126251  0.0532761  0.0114975 -0.0184174 -0.0278168 -0.0385132 
124 -0.0009766 -0.0013504  0.0082321  0.0411072  0.0223083  0.0020828 -0.0291138 -0.0363312 
125  0.0068207  0.0242920  0.0580826  0.0683975  0.0789490  0.0621414  0.0445786  0.0190887 
126  0.0293198  0.0630722  0.0497131 -0.0120468 -0.0440521 -0.0440979 -0.0299225 -0.0291214 
127  0.0271988  0.0838776  0.1353760  0.1022873  0.0741501  0.0458984  0.0275192 -0.0002823 
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APPENDIX 3: SECOND-STAGE LSP SHAPE CODEBOOK 
Index Element 1 Element 2 Element 3 Element 4 Element 5 Element 6 Element 7 Element 8 
0 -0.00045776  0.00002289  0.00099182  0.00270081  0.00746155  0.00529480 -0.00106049 -0.00178528 
1 -0.00029755 -0.00101471 -0.00086212  0.00087738 -0.00106049  0.00087738 -0.01163483  0.00027466 
2 -0.00118256 -0.00199127 -0.00380707 -0.00403595 -0.00030518  0.00240326  0.00474548  0.00889587 
3 -0.00337219 -0.00188446  0.00494385 -0.00525665  0.00161743 -0.00501251  0.00176239  0.00527191 
4  0.00021362  0.00082397 -0.00271606 -0.00733185  0.00150299  0.00543213  0.00144958 -0.00333405 
5 -0.00189972 -0.00291443 -0.00379944 -0.00436401 -0.00100708 -0.00173187 -0.00433350 -0.00628662 
6 -0.00256348 -0.00302124 -0.00202942  0.00238037 -0.00732422  0.00712585  0.00381470  0.00191498 
7 -0.00487518 -0.00572205  0.00082397  0.00188446 -0.00714111 -0.00489044 -0.00206757 -0.00262451 
8 -0.00010681 -0.00145721 -0.00476074  0.00331116  0.01039886 -0.00167847  0.00269318  0.00548553 
9 -0.00064850 -0.00139618 -0.00781250 -0.00374603  0.00415039 -0.00397491 -0.00685883  0.00500488 
10 -0.00432587 -0.00485229 -0.00765228  0.00385284  0.00276184 -0.00205231  0.00595856 -0.00077057 
11 -0.01011658  0.00389099 -0.00176239  0.00331116  0.00072479 -0.00367737 -0.00161743 -0.00171661 
12 -0.00463867 -0.00547791 -0.00512695 -0.00231171  0.00556183  0.00563049 -0.00107574  0.00090027 
13 -0.00424957 -0.00586700 -0.00111389  0.00374603  0.00692749 -0.00564575 -0.00616455 -0.00193024 
14 -0.00263214 -0.00723267 -0.00938416  0.00535583 -0.00386810  0.00198364 -0.00283813  0.00453949 
15  0.00451660 -0.01326752 -0.00163269 -0.00040436  0.00058746 -0.00355530 -0.00116730 -0.00093842 
16  0.00000763  0.00039673  0.00560760 -0.00251770  0.00186157  0.01089478 -0.00137329  0.00457001 
17 -0.00207520 -0.00434113  0.00380707  0.00775909 -0.00274658  0.00917053 -0.00515747 -0.00215149 
18 -0.00079346 -0.00209808  0.00601196 -0.00038147 -0.00785828  0.00248718 -0.00209808  0.01184082 
19 -0.00298309 -0.00412750  0.01414490  0.00212097 -0.00019073 -0.00061798 -0.00274658  0.00065613 
20  0.00035858  0.00170898  0.00259399 -0.01609802 -0.00000763  0.00162506 -0.00133514  0.00100708 
21 -0.00503540 -0.00462341  0.00434875 -0.00257874  0.00315094  0.00467682  0.00090790 -0.01029968 
22 -0.00057220 -0.00221252 -0.00485992 -0.00782013 -0.00888824  0.00464630 -0.00598145  0.00544739 
23 -0.00719452 -0.01031494  0.00247192 -0.00617218 -0.00236511  0.00193024 -0.00309753  0.00254059 
24 -0.00290680 -0.00582886  0.00511169  0.00539398  0.00604248  0.00421143  0.00669861  0.00392151 
25 -0.00224304 -0.00450134  0.00026703  0.00598907  0.00528717  0.00506592 -0.00660706  0.01150513 
26 -0.00428772 -0.00616455  0.00080872  0.00531769 -0.00407410 -0.00506592  0.00903320  0.00828552 
27 -0.01528931 -0.00518799  0.00449371  0.00463104  0.00074005  0.00062561  0.00030518  0.00215912 
28 -0.00177765 -0.00195313 -0.00070953 -0.01091003  0.01485443  0.00244141  0.00580597 -0.00041199 
29 -0.00414276 -0.00515747 -0.00126648  0.00601959  0.01933289  0.00696564 -0.00712585 -0.00523376 
30 -0.00677490 -0.01074219 -0.01129150 -0.00234985 -0.00765991 -0.00885773  0.00039673  0.00651550 
31 -0.00891113 -0.01766968  0.00561523  0.00578308  0.00490570  0.00194550 -0.00356293 -0.00082397 
32 -0.00096130 -0.00098419 -0.00413513  0.00173950  0.00495911  0.01183319  0.00845337 -0.00122833 
33 -0.00326538 -0.00333405  0.00357056 -0.00922394  0.00468445  0.00469971 -0.01351166 -0.00124359 
34 -0.00380707 -0.00453949 -0.00596619 -0.00867462 -0.00395966 -0.00065613  0.00699615 -0.00128174 
35 -0.00752258 -0.00469208  0.00773621 -0.00899506  0.00354004 -0.01000214  0.00416565 -0.00489044 
36  0.00000763 -0.00075531 -0.00958252 -0.00546265 -0.00563049  0.01355743  0.00136566 -0.01033783 
37 -0.00630951 -0.00655365 -0.00659943  0.00173950 -0.00452423  0.00329590 -0.00886536 -0.01154327 
38 -0.00095367 -0.00313568 -0.00857544  0.00354767 -0.01430511  0.00208282  0.00795746 -0.00600433 
39 -0.00719452 -0.01290894  0.00675201  0.00386047 -0.01235962 -0.00559235  0.00556183 -0.00572968 
40 -0.00801086 -0.00989532 -0.00411224 -0.00192261  0.01290894 -0.00526428  0.00534058  0.01023865 
41 -0.00186920 -0.00344086 -0.00266266 -0.01030731  0.00197601 -0.00857544 -0.01191711  0.01605988 
42 -0.00836945 -0.00853729 -0.00543976  0.00074005  0.00202942 -0.00057983  0.01557922 -0.00852203 
43 -0.01739502  0.00542450 -0.00310516 -0.00865936 -0.00068665  0.00004578  0.00126648  0.00104523 
44 -0.00631714 -0.01346588 -0.01500702 -0.00602722  0.00646210  0.01339722 -0.00647736 -0.00049591 
45 -0.00720215 -0.01295471 -0.00642395 -0.00480652  0.01066589 -0.01364136 -0.01339722 -0.00752258 
46 -0.00552368 -0.01621246 -0.01331329  0.01739502 -0.00738525  0.00836182  0.00555420  0.00202942 
47  0.00701904 -0.02751923  0.00681305  0.00177765 -0.00151062 -0.00057220  0.00139618  0.00026703 
48  0.00125885  0.00099945  0.00302887 -0.00566864 -0.00022125  0.02838135 -0.00177765  0.00128937 
49 -0.00152588 -0.00276184  0.01119232  0.00526428 -0.00367737  0.01557159 -0.01921844 -0.00600433 
50 -0.00518036 -0.00488281  0.00891876 -0.00863647 -0.00762939  0.00898743  0.00974274  0.00371552 
51 -0.00656891 -0.00149536  0.02567291 -0.01044464 -0.00462341 -0.00055695 -0.00331879 -0.00172424 
52  0.00264740  0.00337219 -0.00964355 -0.03454590  0.00086975  0.01454163  0.00080109  0.00027466 
53 -0.00373077 -0.00283813  0.00484467 -0.00320435  0.00572968  0.00675201 -0.00530243 -0.03117371 
54 -0.00197601 -0.01000214 -0.00423431 -0.00650787 -0.02683258  0.01259613 -0.00359344  0.00352478 
55 -0.01738739 -0.02180481  0.00868988 -0.01496887 -0.00506592 -0.00038147 -0.00035858  0.00020599 
56 -0.00734711 -0.00748444  0.01610565  0.00942993  0.01790619  0.01776123  0.01367950  0.01322937 
57 -0.00354767 -0.00787354 -0.00128937  0.00877380 -0.00132751  0.00061798 -0.02446747  0.01464081 
58 -0.00668335 -0.00952911  0.00102997  0.00148010 -0.00872040  0.00305176  0.03495026  0.01872253 
59 -0.03459930  0.00503540  0.00631714  0.00146484  0.00110626 -0.00109100 -0.00064850  0.00020599 
60 -0.00075531 -0.00411224 -0.02098846 -0.01145172  0.03794098  0.02877808  0.01161194  0.00054932 
61 -0.00887299 -0.02392578 -0.01149750  0.03517151  0.02966309  0.00566864 -0.02129364 -0.02059937 
62 -0.01180267 -0.03713226 -0.03850555 -0.00773621 -0.01717377 -0.01065826 -0.00489044 -0.00129700 
63 -0.02636719 -0.04943848  0.01272583  0.01393127  0.00457001  0.00045776  0.00072479  0.00040436 
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APPENDIX 4: PITCH PREDICTOR TAB CODEBOOK 

 
Index Element 1 Element 2 Element 3 
0 -0.0112610 -0.1767275 0.0010985 
1 -0.2130735 0.4948120 0.0315245 
2 0.1685180 -0.5930480 0.2047120 
3 0.1311035 0.2366640 0.1258850 
4 0.2671205 0.3766175 0.0750425 
5 0.2727660 0.8498230 -0.1647035 
6 0.1418760 0.2827150 -0.0781860 
7 0.4192810 0.5174865 0.0445555 
8 -0.0790405 0.2878420 -0.0986025 
9 0.0102235 0.5396730 -0.2112120 
10 0.1182555 -0.3234560 -0.1257935 
11 0.0584410 0.4372560 0.0544435 
12 0.2677000 0.6710510 -0.0020140 
13 0.0510560 0.9555970 -0.0752870 
14 0.2883300 0.4584655 -0.1362610 
15 0.4607545 0.6708375 -0.1777040 
16 0.0267945 0.1656190 0.0300600 
17 -0.1670530 0.6494750 0.4698790 
18 0.0991210 -0.2931520 0.1622010 
19 0.0505675 0.3623655 0.2523805 
20 0.0785520 0.4996340 0.4010620 
21 -0.0176085 0.7084045 0.2586975 
22 0.2232055 0.3234255 0.2569580 
23 0.2735290 0.4712525 0.2355345 
24 -0.0867615 0.2794190 0.1318055 
25 -0.2120360 0.8054810 0.3201295 
26 -0.1777955 -0.3514100 0.0110170 
27 -0.1222230 0.4702455 0.2991335 
28 0.1735230 0.5760195 0.1928100 
29 -0.0948180 0.9347840 0.1232910 
30 0.3175050 0.4074400 0.2554320 
31 0.0957640 0.7896425 0.0609740 



 - 53 - 

APPENDIX 5: GAIN CODEBOOK 

 
Index Element 
0 -5.38477 
1 -3.68066 
2 -2.76855 
3 -2.09717 
4 -1.47217 
5 -0.33984 
6 0.67285 
7 1.82031 
8 -0.88525 
9 0.16748 
10 1.20313 
11 2.62549 
12 3.80518 
13 5.64551 
14 8.70605 
15 11.85156 
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APPENDIX 6: GAIN CHANGE THRESHOLD MATRIX 

 
   Log-gain change of previous frame, [dB2] 
   -8 to -6 

j=1 
-6 to -4 

j=2 
-4 to -2 

j=3 
-2 to 0 

j=4 
0 to 2 

j=5 
2 to 4 

j=6 
4 to 6 

j=7 
6 to 8 

j=8 
8 to 10 

j=9 
10 to 12 

j=10 
12 to 14 

j=11 
14 to 16 

j=12 
-24 to –22 i=1 0.00000 0.79102 0.55664 14.26563 14.08398 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
-22 to –20 i=2 0.00000 13.85156 1.73047 13.76758 13.92773 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
-20 to –18 i=3 -1.96094 8.91211 7.83594 14.09961 13.77930 0.91016 -2.41406 0.00000 0.00000 0.00000 0.00000 0.00000 
-18 to –16 i=4 -1.96094 8.66992 13.53125 14.09570 13.95117 12.97461 2.14648 0.00000 0.00000 0.00000 0.00000 0.00000 
-16 to –14 i=5 -1.47266 9.29297 13.92578 13.89063 13.87891 13.93750 12.20703 -4.99023 0.00000 0.00000 0.00000 0.00000 
-14 to –12 i=6 4.60547 12.33398 14.09180 14.14258 14.16016 13.48633 12.39063 2.01172 0.00000 0.00000 0.00000 0.00000 
-12 to –10 i=7 10.66016 10.72656 13.83203 13.68359 13.93945 13.77930 13.09570 10.17578 -0.15430 -2.92578 0.00000 0.00000 
-10 to –8 i=8 6.59375 10.19531 13.34375 12.87305 13.36719 13.36328 13.12891 12.66797 0.72852 0.30078 4.87109 7.85742 
-8 to –6 i=9 2.64063 9.52539 9.85547 10.35938 10.63086 12.92383 12.70508 12.65234 8.96680 1.32422 4.86719 7.81445 
-6 to –4 i=10 6.24805 8.26758 8.78125 9.08594 9.03125 10.34180 11.21875 11.07227 8.32617 8.41992 7.70313 7.86133 
-4 to –2 i=11 6.18945 6.71875 7.98438 7.37109 7.50391 7.69922 9.09180 8.73633 6.91211 7.68750 7.22266 3.50977 
-2 to 0 i=12 4.40430 5.46484 6.17773 6.04492 6.14063 6.84766 5.89063 5.43750 4.67188 5.58008 7.70898 7.46094 
0 to 2 i=13 3.39648 5.41602 5.40039 4.77734 4.59375 4.63477 6.43359 3.54102 4.37891 3.70117 6.64844 4.74414 
2 to 4 i=14 0.00000 3.50000 4.60352 3.92188 3.68164 4.21680 4.18750 3.32617 3.38867 2.32813 5.15039 1.76563 
4 to 6 i=15 0.00000 1.10156 3.04492 3.18945 2.60156 2.43164 2.91016 1.48438 0.43555 0.44336 1.50391 1.75391 
6 to 8 i=16 0.00000 -0.11914 -1.13672 1.41602 1.49609 0.72852 0.60352 -0.35352 -0.98242 -1.15039 -1.99414 0.00000 

8 to 10 i=17 0.00000 0.00000 0.00000 1.36861 1.18557 -0.36990 -4.01682 -2.21214 0.00000 -1.33077 -3.04360 0.00000 R
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10 to 12 i=18 0.00000 0.00000 0.00000 0.52843 0.43190 0.00000 0.00000 -2.86324 0.00000 0.00000 0.00000 0.00000 
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APPENDIX 7: EXCITATION VQ SHAPE CODEBOOK 

 
Index Element 1 Element 2 Element 3 Element 4 
0 -0.514526 0.847412 0.166748 0.120605 
1 0.389648 1.125000 -1.070557 0.048584 
2 -0.263916 -0.053101 0.189209 0.177734 
3 2.927368 -0.262695 -0.092896 0.274292 
4 -0.348755 -0.356812 -0.765747 -0.639038 
5 1.912231 0.890869 -2.045654 -0.802124 
6 -0.180298 -1.221802 -1.728760 -0.965210 
7 1.743286 -1.338379 0.184204 -0.281128 
8 -1.407593 1.109497 1.724487 -0.347900 
9 2.324219 1.637939 0.742188 0.526001 
10 -0.330933 -0.405396 0.890747 1.477661 
11 1.545532 -0.195068 0.148560 0.073486 
12 -0.583740 0.456055 0.253296 -1.269043 
13 0.587769 -0.129028 0.616699 -0.256714 
14 -1.211426 -0.743896 -0.608887 -0.219360 
15 0.196289 -1.870728 -0.309326 1.111694 

 

 

 

   

 


