
 Common Table Formats

July 1995 Page 9

Common Table Formats
TrueType Open consists of five tables: the Glyph Substitution table (GSUB), the Glyph

Positioning table (GPOS), the Baseline table (BASE), the Justification table (JSTF), and

the Glyph Definition table (GDEF). These tables use some of the same data formats.

This chapter explains the conventions used in all TrueType Open tables, and it describes

the common table formats. Separate chapters provide complete details about the GSUB,

GPOS, BASE, JSTF, and GDEF tables.

Overview
The TrueType Open tables provide typographic information for properly positioning and

substituting glyphs, operations that are required for accurate typography in many

language environments. TrueType Open data is organized by script, language system,

typographic feature, and lookup.

Scripts are defined at the top level. A script is a collection of glyphs used to represent one

or more languages in written form (see Figure 2a). For instance, a single script—Latin—

is used to write English, French, German, and many other languages. In contrast, three

scripts—Hiragana, Katakana, and Kanji—are used to write Japanese. With TrueType

Open, multiple scripts may be supported by a single font.

Figure 2a. Glyphs in the Latin, Kanji, and Arabic scripts

A language system may modify the functions or appearance of glyphs in a script to

represent a particular language. For example, the eszet ligature is used in the German

language system, but not in French or English (see Figure 2b). And the Arabic script

contains different glyphs for writing the Farsi and Urdu languages. In TrueType Open,

language systems are defined within scripts.

Figure 2b. Differences in the English, French, and German language systems
A language system defines features, which are typographic rules for using glyphs to

represent a language. Sample features are a “vert” feature that substitutes vertical glyphs

in Japanese, a “liga” feature for using ligatures in place of separate glyphs, and a “mark”

feature that positions diacritical marks with respect to base glyphs in Arabic (see Figure

2c). In the absence of language-specific rules, default language system features apply to

2

TrueType Open Font Specification Revision 1.0

Page 10 July 1995

the entire script. For instance, a default language system feature for the Arabic script

substitutes initial, medial, and final glyph forms based on a glyph’s position in a word.

Figure 2c. A ligature glyph feature substitutes the <etc> ligature for individual

glyphs, and a mark feature positions diacritical marks above an Arabic ligature

glyph.

Features are implemented with lookup data that the text-processing client uses to

substitute and position glyphs. Lookups describe the glyphs affected by an operation, the

type of operation to be applied to these glyphs, and the resulting glyph output.

Table Organization
Two TrueType Open tables, GSUB and GPOS, use the same data formats to describe the

typographic functions of glyphs and the languages and scripts that they support: a

ScriptList table, a FeatureList table, and a LookupList table. In GSUB, the tables define

glyph substitution data. In GPOS, they define glyph positioning data. This chapter

describes these common table formats.

The ScriptList identifies the scripts in a font, each of which is represented by a Script

table that contains script and language-system data. Language system tables reference

features, which are defined in the FeatureList. Each feature table references the lookup

data defined in the LookupList that describes how, when, and where to implement the

feature.

 Common Table Formats

July 1995 Page 11

Figure 2d. The relationship of scripts, language systems, features, and lookups for

substitution and positioning tables

Note: The data in the BASE and JSTF tables also is organized by script and

language system. However, the data formats differ from those in GSUB and

GPOS, and they do not include a FeatureList or LookupList. The BASE and JSTF

data formats are described in the BASE and JSTF chapters.

The information used to substitute and position glyphs is defined in Lookup subtables.

Each subtable supplies one type of information, depending upon whether the lookup is

part of a GSUB or GPOS table. For instance, a GSUB lookup might specify the glyphs to

be substituted and the context in which a substitution occurs, and a GPOS lookup might

specify glyph position adjustments for kerning. TrueType Open has five types of GSUB

lookups (described in the GSUB chapter) and seven types of GPOS lookups (described in

the GPOS chapter).

Each subtable includes a Coverage table that lists the “covered” glyphs that will result in

a glyph substitution or positioning operation. The Coverage table formats are described in

this chapter.

Some substitution or positioning operations may apply to groups, or classes, of glyphs.

GSUB and GPOS Lookup subtables use the Class Definition table to assign glyphs to

classes. This chapter includes a description of the Class Definition table formats.

TrueType Open Font Specification Revision 1.0

Page 12 July 1995

Lookup subtables also may contain device tables, described in this chapter, to adjust

scaled contour glyph coordinates for particular output sizes and resolutions. This chapter

also describes the data types used in TrueType Open. Sample tables and lists that

illustrate the common data formats are supplied at the end of this chapter.

Conventions
Many data types, listed below, are used in the TrueType Open table formats. As with all

other TrueType data types, the TrueType Open tables store multi-byte values in

“Motorola order,” with the most significant byte first.

Data types

Type Description

uint8 Unsigned character (length = 8 bits)

uint16 Unsigned integer (length = 16 bits)

int16 Signed integer (length = 16 bits)

uint32 Unsigned long integer (length = 32 bits)

fixed32 Fixed point 16.16 number (length = 32 bits)

Tag Array of four uint8s (length = 32 bits)

 —used to identify a script, language system, feature, or baseline

GlyphID Glyph index number, same as uint16 (length = 16 bits)

Offset Offset to a table, same as uint16 (length = 16 bits)

 —NULL offset = 0x0000

Scripts and Languages
Three tables and their associated records apply to scripts and languages: the Script List

table (ScriptList) and its script record (ScriptRecord), the Script table and its language

system record (LangSysRecord), and the Language System table (LangSys).

Script List Table and Script Record

TrueType Open fonts may contain one or more groups of glyphs used to render various

scripts, which are enumerated in a ScriptList table. Both the GSUB and GPOS tables

define Script List tables (ScriptList):

• The GSUB table uses the ScriptList table to access the glyph substitution features

that apply to a script. For details, see the chapter, The Glyph Substitution Table

(GSUB).

• The GPOS table uses the ScriptList table to access the glyph positioning features

that apply to a script. For details, see the chapter, The Glyph Positioning Table

(GPOS).

A ScriptList table consists of a count of the scripts represented by the glyphs in the font

(ScriptCount) and an array of records (ScriptRecord), one for each script for which the

 Common Table Formats

July 1995 Page 13

font defines script-specific features (a script without script-specific features does not need

a ScriptRecord).

The ScriptRecord array stores the records alphabetically by a ScriptTag that identifies the

script. Each ScriptRecord consists of a ScriptTag and an offset to a Script table.

Example 1 at the end of this chapter shows a ScriptList table and ScriptRecords for a

Japanese font that uses three scripts.

ScriptList table

Type Name Description

uint16 ScriptCount Number of ScriptRecords

struct ScriptRecord[ScriptCount] Array of ScriptRecords

 —listed alphabetically by ScriptTag

ScriptRecord

Type Name Description

Tag ScriptTag 4-byte ScriptTag identifier

Offset � Script Offset to Script table

 —from beginning of ScriptList

Script Table and Language System Record
A Script table identifies each language system that defines how to use the glyphs in a

script for a particular language. It also references a default language system that defines

how to use the script’s glyphs in the absence of language-specific knowledge.

A Script table begins with an offset to the Default Language System table

(DefaultLangSys), which defines the set of features that regulate the default behavior of

the script. Next, Language System Count (LangSysCount) defines the number of

language systems (excluding the DefaultLangSys) that use the script. In addition, an array

of Language System Records (LangSysRecord) defines each language system (excluding

the default) with an identification tag (LangSysTag) and an offset to a Language System

table (LangSys). The LangSysRecord array stores the records alphabetically by

LangSysTag.

If no language-specific script behavior is defined, the LangSysCount is set to zero (0),

and no LangSysRecords are allocated.

Script table

Type Name Description

Offset � DefaultLangSys Offset to DefaultLangSys table

 —from beginning of Script table

 —may be NULL

uint16 LangSysCount Number of LangSysRecords for this script

 —excluding the DefaultLangSys

struct LangSysRecord Array of LangSysRecords

 [LangSysCount] —listed alphabetically by LangSysTag

TrueType Open Font Specification Revision 1.0

Page 14 July 1995

LangSysRecord

Type Name Description

Tag LangSysTag 4-byte LangSysTag identifier

Offset � LangSys Offset to LangSys table

 —from beginning of Script table

Language System Table

The Language System table (LangSys) identifies language-system features used to render

the glyphs in a script. (The LookupOrder offset is reserved for future use.)

Optionally, a LangSys table may define a Required Feature Index (ReqFeatureIndex) to

specify one feature as required within the context of a particular language system. For

example, in the Cyrillic script, the Serbian language system always renders certain glyphs

differently than the Russian language system.

Only one feature index value can be tagged as the ReqFeatureIndex. This is not a

functional limitation, however, because the feature and lookup definitions in TrueType

Open are structured so that one feature table can reference many glyph substitution and

positioning lookups. When no required features are defined, then the ReqFeatureIndex is

set to 0xFFFF.

All other features are optional. For each optional feature, a zero-based index value

references a record (FeatureRecord) in the FeatureRecord array, which is stored in a

Feature List table (FeatureList). The feature indices themselves (excluding the

ReqFeatureIndex) are stored in arbitrary order in the FeatureIndex array. The

FeatureCount specifies the total number of features listed in the FeatureIndex array.

Features are specified in full in the FeatureList table, FeatureRecord, and Feature table,

which are described later in this chapter.

Example 2 at the end of this chapter shows a Script table, LangSysRecord, and LangSys

table used for contextual positioning in the Arabic script.

LangSys table

Type Name Description

Offset � LookupOrder = NULL (reserved for an offset to a reordering table)

uint16 ReqFeatureIndex Index of a feature required for this language system

 — if no required features = 0xFFFF

uint16 FeatureCount Number of FeatureIndex values for this language system

 —excludes the required feature

uint16 FeatureIndex Array of indices into the FeatureList

 [FeatureCount] —in arbitrary order

Features and Lookups
Features define the functionality of a TrueType Open font and they are named to convey

meaning to the text-processing client. Consider a feature named “liga” to create ligatures.

Because of its name, the client knows what the feature does and can decide whether to

 Common Table Formats

July 1995 Page 15

apply it. A current list of TrueType Open registered features and their are listed in the

TrueType Open Registry chapter at the end of this document. Font developers can use

these features, as well as create their own.

After choosing which features to use, the client assembles all lookups from the selected

features. Multiple lookups may be needed to define the data required for different

substitution and positioning actions, as well as to control the sequencing and effects of

those actions.

To implement features, a client applies the lookups in the order the lookup definitions

occur in the LookupList. As a result, within the GSUB or GPOS table, lookups from

several different features may be interleaved during text processing. A lookup is

completed when the client locates a target glyph or glyph context and substitutes or

positions a glyph.

Note: The substitution (GSUB) lookups always occur before the positioning

(GPOS) lookups. The lookup sequencing mechanism in TrueType relies on the

font to determine the proper order of text-processing operations.

Lookup data is defined in one or more subtables that contain information about specific

glyphs and the operations to be performed on them. Each type of lookup has one or more

corresponding subtable definitions. The choice of a subtable format depends upon two

factors: the precise content of the information being applied to an operation, and the

required storage efficiency. (For complete definitions of all lookup types and subtables,

see the the GSUB and GPOS chapters of this document.)

TrueType Open features define information that is specific to the layout of the glyphs in a

font. They do not encode information that is constant within the conventions of a

particular language or the typography of a particular script. Information that would be

replicated across all fonts in a given language belongs in the text-processing application

for that language, not in the fonts.

Feature List Table

The headers of the GSUB and GPOS tables contain offsets to Feature List tables

(FeatureList) that enumerate all the features in a font. Features in a particular FeatureList

are not limited to any single script. A FeatureList contains the entire list of either the

GSUB or GPOS features that are used to render the glyphs in all the scripts in the font.

The FeatureList table enumerates features in an array of records (FeatureRecord) and

specifies the total number of features (FeatureCount). Every feature must have a

FeatureRecord, which consists of a FeatureTag that identifies the feature and an offset to

a Feature table (described next). The FeatureRecord array is arranged alphabetically by

FeatureTag names.

Note: The values stored in the FeatureIndex array of a LangSys table are used

to locate records in the FeatureRecord array of a FeatureList table.

TrueType Open Font Specification Revision 1.0

Page 16 July 1995

FeatureList table

Type Name Description

uint16 FeatureCount Number of FeatureRecords in this table

struct FeatureRecord Array of FeatureRecords

 [FeatureCount] —zero-based (first feature has FeatureIndex = 0)

 —listed alphabetically by FeatureTag

FeatureRecord

Type Name Description

Tag FeatureTag 4-byte feature identification tag

Offset � Feature Offset to Feature table

 —from beginning of FeatureList

Feature Table

A Feature table defines a feature with one or more lookups. The client uses the lookups to

substitute or position glyphs.

Feature tables defined within the GSUB table contain references to glyph substitution

lookups, and feature tables defined within the GPOS table contain references to glyph

positioning lookups. If a text-processing operation requires both glyph substitution and

positioning, then both the GSUB and GPOS tables must each define a Feature table, and

the tables must use the same FeatureTags.

A Feature table consists of an offset to a Feature Parameters (FeatureParams) table

(currently reserved for future use and set to NULL), a count of the lookups listed for the

feature (LookupCount), and an arbitrarily ordered array of indices into a LookupList

(LookupListIndex). The LookupList indices are references into an array of offsets to

Lookup tables.

To identify the features in a GSUB or GPOS table, a text-processing client reads the

FeatureTag of each FeatureRecord referenced in a given LangSys table. Then the client

selects the features it wants to implement and uses the LookupList to retrieve the Lookup

indices of the chosen features. Next, the client arranges the indices in the LookupList

order. Finally, the client applies the lookup data to substitute or position glyphs.

Example 3 at the end of this chapter shows the FeatureList and Feature tables used to

substitute ligatures in two languages.

Feature table

Type Name Description

Offset � FeatureParams = NULL (reserved for offset to FeatureParams)

uint16 LookupCount Number of LookupList indices for this feature

uint16 LookupListIndex Array of LookupList indices for this feature

 [LookupCount] —zero-based (first lookup is LookupListIndex = 0)

 Common Table Formats

July 1995 Page 17

Lookup List Table

The headers of the GSUB and GPOS tables contain offsets to Lookup List tables

(LookupList) for glyph substitution (GSUB table) and glyph positioning (GPOS table).

The LookupList table contains an array of offsets to Lookup tables (Lookup). The font

developer defines the Lookup sequence in the Lookup array to control the order in which

a text-processing client applies lookup data to glyph substitution and positioning

operations. LookupCount specifies the total number of Lookup table offsets in the array.

Example 4 at the end of this chapter shows three ligature lookups in the LookupList table.

LookupList table

Type Name Description

uint16 LookupCount Number of lookups in this table

Offset � Lookup[LookupCount] Array of offsets to Lookup tables

 —from beginning of LookupList

 —zero based (first lookup is Lookup index = 0)

Lookup Table

A Lookup table (Lookup) defines the specific conditions, type, and results of a

substitution or positioning action that is used to implement a feature. For example, a

substitution operation requires a list of target glyph indices to be replaced, a list of

replacement glyph indices, and a description of the type of substitution action.

Each Lookup table may contain only one type of information (LookupType), determined

by whether the lookup is part of a GSUB or GPOS table. GSUB supports five

LookupTypes, and GPOS supports seven LookupTypes (for details about LookupTypes,

see the GSUB and GPOS chapters of the document).

Each LookupType is defined with one or more subtables, and each subtable definition

provides a different representation format. The format is determined by the content of the

information required for an operation and by required storage efficiency. When glyph

information is best presented in more than one format, a single lookup may contain more

than one subtable, as long as all the subtables are the same LookupType. For example,

within a given lookup, a glyph index array format may best represent one set of target

glyphs, whereas a glyph index range format may be better for another set of target

glyphs.

During text processing, a client applies a lookup to each glyph in the string before

moving to the next lookup. Once the client finds a target glyph index or context in a

subtable and substitutes or positions the glyph, the lookup is completed for that glyph.

A Lookup table contains a LookupType, specified as an integer, that defines the type of

information stored in the lookup. The LookupFlag specifies lookup qualifiers that assist a

text-processing client in substituting or positioning glyphs. The SubTableCount specifies

the total number of SubTables. The SubTable array specifies offsets, measured from the

beginning of the Lookup table, to each SubTable enumerated in the SubTable array.

Lookup table

Type Name Description

TrueType Open Font Specification Revision 1.0

Page 18 July 1995

uint16 LookupType Different enumerations for GSUB and GPOS

uint16 LookupFlag Lookup qualifiers

uint16 SubTableCount Number of SubTables for this lookup

Offset � SubTable Array of offsets to SubTables

 [SubTableCount] —from beginning of Lookup table

The LookupFlag uses four bits:

• The first bit, RightToLeft, is set when the text is written from right to left. This bit

defines the order in which lookups specify glyph sequences.

• The next three bits—IgnoreBaseGlyphs, IgnoreLigatures, and IgnoreMarks—are set

to specify additional instructions for applying a lookup to a glyph string.

LookupFlag bit enumeration

Mask Name Description

0x0001 RightToLeft If set, implied glyph order is right to left

 —otherwise, glyph order is left to right

0x0002 IgnoreBaseGlyphs If set, skips over base glyphs

0x0004 IgnoreLigatures If set, skips over ligatures

0x0008 IgnoreMarks If set, skips over combining marks

0xFFF0 Reserved For future use

For example, in Arabic text, a character string might have the pattern <base character -

mark character - base character>. That string could be converted into a ligature composed

of two components, one for each base character, with the combining mark glyph over the

first component. To produce this ligature, the font developer would set the IgnoreMarks

bit to tell the client to ignore the mark, substitute the ligature glyph first, and then

position the mark glyph over the ligature. Alternatively, a lookup which did not set the

IgnoreMarks bit could be used to describe a three-component ligature glyph, composed

of the first base glyph, the mark glyph, and the second base glyph.

Coverage Table
Each subtable in a lookup references a Coverage table (Coverage), which specifies all the

glyphs affected by a substitution or positioning operation described in the subtable. The

GSUB, GPOS, and GDEF tables rely on this notion of coverage. If a glyph does not

appear in a Coverage table, the client can skip that subtable and move immediately to the

next subtable.

A Coverage table identifies glyphs by glyph indices (GlyphIDs) either of two ways:

• As a list of individual glyph indices in the glyph set.

• As ranges of consecutive indices. The range format gives a number of start-glyph

and end-glyph index pairs to denote the consecutive glyphs covered by the table.

 Common Table Formats

July 1995 Page 19

In a Coverage table, a format code (CoverageFormat) specifies the format as an integer: 1

= lists, and 2 = ranges.

A Coverage table defines a unique index value (Coverage Index) for each covered glyph.

This unique value specifies the position of the covered glyph in the Coverage table. The

client uses the Coverage Index to look up values in the subtable for each glyph.

Coverage Format 1

Coverage Format 1 consists of a format code (CoverageFormat) and a count of covered

glyphs (GlyphCount), followed by an array of glyph indices (GlyphArray). The glyph

indices must be in numerical order for binary searching of the list. When a glyph is found

in the Coverage table, its position in the GlyphArray determines the Coverage Index that

is returned—the first glyph has a Coverage Index = 0, and the last glyph has a Coverage

Index = GlyphCount -1.

Example 5 at the end of this chapter shows a Coverage table that uses Format 1 to list the

GlyphIDs of all lowercase descender glyphs in a font.

CoverageFormat1 table: Individual glyph indices

Type Name Description

uint16 CoverageFormat Format identifier

 —format = 1

uint16 GlyphCount Number of glyphs in the GlyphArray

GlyphID GlyphArray[GlyphCount] Array of GlyphIDs

 —in numerical order

Coverage Format 2

Format 2 consists of a format code (CoverageFormat) and a count of glyph index ranges

(RangeCount), followed by an array of records (RangeRecords). Each RangeRecord

consists of a start glyph index (Start), an end glyph index (End), and the Coverage Index

associated with the range’s Start glyph. Ranges must be in GlyphID order, and they must

be distinct, with no overlapping.

The Coverage Indexes for the first range begin with zero (0), and the Start Coverage

Indexes for each succeeding range are determined by adding the length of the preceding

range

(End GlyphID - Start GlyphID + 1) to the array Index. This allows for a quick calculation

of the Coverage Index for any glyph in any range using the formula:

Coverage Index (GlyphID) = StartCoverageIndex + GlyphID - Start GlyphID.

Example 6 at the end of this chapter shows a Coverage table that uses Format 2 to

identify a range of numeral glyphs in a font.

CoverageFormat2 table: Range of glyphs

Type Name Description

uint16 CoverageFormat Format identifier

 —format = 2

uint16 RangeCount Number of RangeRecords

TrueType Open Font Specification Revision 1.0

Page 20 July 1995

struct RangeRecord[RangeCount] Array of glyph ranges

 —ordered by Start GlyphID

RangeRecord

Type Name Description

GlyphID Start First GlyphID in the range

GlyphID End Last GlyphID in the range

uint16 StartCoverageIndex Coverage Index of first GlyphID in range

Class Definition Table
In TrueType Open, index values identify glyphs. For efficiency and ease of

representation, a font developer can group glyph indices to form glyph classes. Class

assignments vary in meaning from one lookup subtable to another. For example, in the

GSUB and GPOS tables, classes are used to describe glyph contexts. GDEF tables also

use the idea of glyph classes.

Consider a substitution action that replaces only the lowercase ascender glyphs in a glyph

string. To more easily describe the appropriate context for the substitution, the font

developer might divide the font’s lowercase glyphs into two classes, one that contains the

ascenders and one that contains the glyphs without ascenders.

A font developer can assign any glyph to any class, each identified with an integer called

a class value. A Class Definition table (ClassDef) groups glyph indices by class,

beginning with Class 1, then Class 2, and so on. All glyphs not assigned to a class fall

into Class 0. Within a given class definition table, each glyph in the font belongs to

exactly one class.

The ClassDef table can have either of two formats: one that assigns a range of

consecutive glyph indices to different classes, or one that puts groups of consecutive

glyph indices into the same class.

Class Definition Table Format 1

The first class definition format (ClassDefFormat1) specifies a range of consecutive

glyph indices and a list of corresponding glyph class values. This table is useful for

assigning each glyph to a different class because the glyph indices in each class are not

grouped together.

A ClassDef Format 1 table begins with a format identifier (ClassFormat). The range of

glyph indices (GlyphIDs) covered by the table is identified by two values: the GlyphID of

the first glyph (StartGlyph), and the number of consecutive GlyphIDs (including the first

one) that will be assigned class values (GlyphCount). The ClassValueArray lists the class

value assigned to each GlyphID, starting with the class value for StartGlyph and

following the same order as the GlyphIDs. Any glyph not included in the range of

covered GlyphIDs automatically belongs to Class 0.

 Common Table Formats

July 1995 Page 21

Example 7 at the end of this chapter uses Format 1 to assign class values to the

lowercase, x-height, ascender, and descender glyphs in a font.

ClassDefFormat1 table: Class array

Type Name Description

uint16 ClassFormat Format identifier

 —format = 1

GlyphID StartGlyph First GlyphID of the ClassValueArray

uint16 GlyphCount Size of the ClassValueArray

uint16 ClassValueArray Array of Class Values

 [GlyphCount] —one per GlyphID

Class Definition Table Format 2

The second class definition format (ClassDefFormat2) defines multiple groups of glyph

indices that belong to the same class. Each group consists of a discrete range of glyph

indices in consecutive order (ranges cannot overlap).

The ClassDef Format 2 table contains a format identifier (ClassFormat), a count of

ClassRangeRecords that define the groups and assign class values (ClassRangeCount),

and an array of ClassRangeRecords ordered by the GlyphID of the first glyph in each

record (ClassRangeRecord).

Each ClassRangeRecord consists of a Start glyph index, an End glyph index, and a Class

value. All GlyphIDs in a range, from Start to End inclusive, constitute the class identified

by the Class value. Any glyph not covered by a ClassRangeRecord is assumed to belong

to Class 0.

Example 8 at the end of this chapter uses Format 2 to assign class values to four types of

glyphs in the Arabic script.

ClassDefFormat2 table: Class ranges

Type Name Description

uint16 ClassFormat Format identifier

 —format = 2

uint16 ClassRangeCount Number of ClassRangeRecords

struct ClassRangeRecord Array of ClassRangeRecords

 [ClassRangeCount] —ordered by Start GlyphID

ClassRangeRecord

Type Name Description

GlyphID Start First GlyphID in the range

GlyphID End Last GlyphID in the range

uint16 Class Applied to all glyphs in the range

TrueType Open Font Specification Revision 1.0

Page 22 July 1995

Device Tables
Glyphs in a font are defined in design units specified by the font developer. Font scaling

increases or decreases a glyph’s size and rounds it to the nearest whole pixel. However,

precise glyph positioning often requires adjustment of these scaled and rounded values.

Hinting, applied to points in the glyph outline, is an effective solution to this problem, but

it may require the font developer to redesign or re-hint glyphs.

Another solution—used by the GPOS, BASE, JSTF, and GDEF tables—is to use a

Device table to specify correction values to adjust the scaled design units. A Device table

applies the correction values to the range of sizes identified by StartSize and EndSize,

which specify the smallest and largest pixel-per-em (ppem) sizes needing adjustment.

Because the adjustments often are very small (a pixel or two), the correction can be

compressed into a 2-, 4-, or 8-bit representation per size. Two bits can represent a number

in the range {-2, -1, 0, or 1}, four bits can represent a number in the range {-8 to 7}, and

eight bits can represent a number in the range {-128 to 127}. The Device table identifies

one of three data formats—signed 2-, 4,- or 8-bit values—for the adjustment values

(DeltaFormat). A single Device table provides delta information for one coordinate at a

range of sizes.

Format Bits Description

1 2 Signed 2-bit value, 8 values per uint16

2 4 Signed 4-bit value, 4 values per uint16

3 8 Signed 8-bit value, 2 values per uint16

The 2-, 4-, or 8-bit signed values are packed into uint16’s most significant bits first. For

example, using a DeltaFormat of 2 (4-bit values), an array of values equal to {1, 2, 3, -1}

would be represented by the DeltaValue 0x123F.

The DeltaValue array lists the number of pixels to adjust specified points on the glyph, or

the entire glyph, at each ppem size in the targeted range. In the array, the first index

position specifies the number of pixels to add or subtract from the coordinate at the

smallest ppem size that needs correction, the second index position specifies the number

of pixels to add or subtract from the coordinate at the next ppem size, and so on for each

ppem size in the range.

Example 9 at the end of this chapter uses a Device table to define the minimum extent

value for a math script.

Device table

Type Name Description

uint16 StartSize Smallest size to correct

 —in ppem

uint16 EndSize Largest size to correct

 —in ppem

uint16 DeltaFormat Format of DeltaValue array data: 1, 2, or 3

uint16 DeltaValue[] Array of compressed data

 Common Table Formats

July 1995 Page 23

Common Table Examples
The rest of this chapter describes and illustrates examples of all the common table

formats. All the examples reflect unique parameters, but the samples provide a useful

reference for building tables specific to other situations.

The examples have three columns showing hex data, source, and comments.

Example 1: ScriptList Table and ScriptRecords

Example 1 illustrates a ScriptList table and ScriptRecord definitions for a Japanese font

with multiple scripts: Han Ideographic, Kana, and Latin. Each script has script-specific

behavior.

Example 1

Hex Data Source Comments

 ScriptList

 TheScriptList ;ScriptList table

definition

0003 3 ;ScriptCount

 ;ScriptRecord[0]

 ; in alphabetical order

by

 ; ScriptTag

68616E69 "hani" ;ScriptTag

 ; Han Ideographic script

0014 HanIScriptTable ;offset to

Script table

 ;ScriptRecord[1]

6B616E61 "kana" ;ScriptTag

 ; Hiragana and Katakana

scripts

0018 KanaScriptTable ;offset to

Script table

 ;ScriptRecord[2]

6C61746E "latn" ;ScriptTag

 ; Latin script

001C LatinScriptTable ;offset to

Script table

Example 2: Script Table, LangSysRecord, and LangSys Table

Example 2 illustrates the Script table, LangSysRecord, and LangSys table definitions for

the Arabic script and the Urdu language system. The default LangSys table defines three

default Arabic script features used to replace certain glyphs in words with their proper

initial, medial, and final glyph forms. These contextual substitutions are invariant and

occur in all language systems that use the Arabic script.

Many alternative glyphs in the Arabic script have language-specific uses. For instance,

the Arabic, Farsi, and Urdu language systems use different glyphs for numerals. To

maintain character-set compatibility, the Unicode standard includes separate character

codes for the Arabic and Farsi numeral glyphs. However, the standard uses the same

TrueType Open Font Specification Revision 1.0

Page 24 July 1995

character codes for Farsi and Urdu numerals, even though three of the Urdu glyphs (4, 6,

and 7) differ from the Farsi glyphs. To access and display the proper glyphs for the Urdu

numerals, users of the text-processing client must enter the character codes for the Farsi

numerals. Then the text-processing client uses a required TrueType Open glyph

substitution feature, defined in the Urdu LangSys table, to access the correct Urdu glyphs

for the 4, 6, and 7 numerals.

Note that the Urdu LangSys table repeats the default script features. This repetition is

necessary because the Urdu language system also uses alternative glyphs in the initial,

medial, and final glyph positions in words.

Example 2

Hex Data Source Comments

 Script

 ArabicScriptTable ;Script table

definition

000A DefLangSys ;offset to

DefaultLangSys table

0001 1 ;LangSysCount

 ;LangSysRecord[0]

 ; in alphabetical order

by

 ; LangSysTag

55524420 "URD " ;LangSysTag

 ; Urdu language

0016 UrduLangSys ;offset to LangSys

table for

 ; Urdu

 LangSys

 DefLangSys ;default LangSys

table

 ; definition

0000 NULL ;LookupOrder

 ; reserved, null

FFFF 0xFFFF ;ReqFeatureIndex

 ; no required features

0003 3 ;FeatureCount

0000 0 ;FeatureIndex[0]

 ; in arbitrary order

 ; "init" feature (initial

 ; glyph)

0001 1 ;FeatureIndex[1]

 ; "fina" feature (final

glyph)

0002 2 ;FeatureIndex[2]

 ; for "medi" feature

(medial

 ; glyph)

 LangSys

 UrduLangSys ;LangSys table

definition

0000 NULL ;LookupOrder

 ; reserved, null

 Common Table Formats

July 1995 Page 25

0003 3 ;ReqFeatureIndex

 ; numeral subsitution in

Urdu

0003 3 ;FeatureCount

0000 0 ;FeatureIndex[0]

 ; in arbitrary order

 ; "init" feature (initial

 ; glyph)

0001 1 ;FeatureIndex[1]

 ; "fina" feature (final

glyph)

0002 2 ;FeatureIndex[2]

 ; "medi" feature (medial

glyph)

Example 3: FeatureList Table and Feature Table

Example 3 shows the FeatureList and Feature table definitions for ligatures in the Latin

script. The FeatureList has three features, all optional and named “liga.” One feature, also

a default, implements ligatures in Latin if no language-specific feature specifies other

ligatures. Two other features implement ligatures in the Turkish and German languages,

respectively.

Three lookups define glyph substitutions for rendering ligatures in this font. The first

lookup produces the “ffl,” “fl,” and “ff” ligatures; the second produces the “ffi” and “fi”

ligatures; and the third produces the eszet ligature.

The ligatures that begin with an “f” are separated into two sets because Turkish has a

dotless “i” glyph and so does not use “ffi” and “fi” ligatures. However, Turkish does use

the “ffl,” “fl,” and “ff” ligatures, and the TurkishLigatures feature table lists this one

lookup.

Only the German language system uses the eszet ligature, so the GermanLigatures feature

table includes a lookup for rendering that ligature.

Because the Latin script can use both sets of ligatures, the DefaultLigatures feature table

defines two LookupList indices: one for the “ffl,” “fl,” and “ff” ligatures, and one for the

“ffi” and “fi” ligatures. If the text-processing client selects this feature, then the font

applies both lookups.

Note that the TurkishLigatures and DefaultLigatures feature tables both list a

LookupListIndex of zero (0) for the “ffl,” “fl,” and “ff” ligatures lookup. This is because

language-specific lookups override all default language-system lookups, and a language-

system feature table must explicitly list all lookups that apply to the language.

TrueType Open Font Specification Revision 1.0

Page 26 July 1995

Example 3

Hex Data Source Comments

 FeatureList

 TheFeatureList ;FeatureList

table definition

0003 3 ;FeatureCount

 ;FeatureRecord[0]

6C696761 "liga" ;FeatureTag

0014 TurkishLigatures ;offset to

Feature table

 ; FflFfFlLiga

 ;FeatureRecord[1]

6C696761 "liga" ;FeatureTag

001A DefaultLigatures ;offset to

Feature table

 ; FfiFiLiga, FflFfFlLiga

 ;FeatureRecord[2]

6C696761 "liga" ;FeatureTag

0022 GermanLigatures ;offset to

Feature table

 ; EszetLiga

 Feature

 TurkishLigatures ;Feature

table definition

0000 NULL ;FeatureParams

 ; reserved, null

0001 1 ;LookupCount

0000 0 ;LookupListIndex[0]

 ; ffl, fl, ff ligature

 ; substitution Lookup

 Feature

 DefaultLigatures ;Feature

table definition

0000 NULL ;FeatureParams - reserved,

null

0002 2 ;LookupCount

0000 0 ;LookupListIndex[0]

 ; in arbitrary order

 ; ffl, fl, ff ligatures

0001 1 ;LookupListIndex[1]

 ; ffi, fi ligature

substitution

 ; Lookup

 Feature

 GermanLigatures ;Feature

table definition

0000 NULL ;FeatureParams - reserved,

null

0001 3 ;LookupCount

0000 0 ;LookupListIndex[0]

 ; in arbitrary order

 ; ffl, fl, ff ligatures

0001 1 ;LookupListIndex[1]

 ; ffi, fi ligature

substitution

 ; Lookup

 Common Table Formats

July 1995 Page 27

0002 2 ;LookupListIndex[0]

 ; eszet ligature

substitution

 ; Lookup

TrueType Open Font Specification Revision 1.0

Page 28 July 1995

Example 4: LookupList Table and Lookup Table

A continuation of Example 3, Example 4 shows three ligature lookups in the LookupList

table. The first generates the “ffl,” “fl,” and “ff” ligatures; the second produces the “ffi”

and “fi” ligatures; and the third generates the eszet ligature. Each lookup table defines an

offset to a subtable that contains data for the ligature substitution.

Example 4

Hex Data Source Comments

 LookupList

 TheLookupList ;LookupList table

definition

0003 3 ;LookupCount

0008 FflFlFfLookup ;offset to Lookup[0]

table

 ; in design order

0010 FfiFiLookup ;offset to Lookup[1]

table

0018 EszetLookup ;offset to Lookup[2]

table

 Lookup

 FflFlFfLookup ;Lookup[0] table

definition

0004 4 ;LookupType

 ; ligature subst

000C 0x000C ;LookupFlag

 ; IgnoreLigatures,

IgnoreMarks

0001 1 ;SubTableCount

0018 FflFlFfSubtable ;offset to

FflFlFf ligature

 ; substitution subtable

 Lookup

 FfiFiLookup ;Lookup[1] table

definition

0004 4 ;LookupType

 ; ligature subst

000C 0x000C ;LookupFlag

 ; IgnoreLigatures,

IgnoreMarks

0001 1 ;SubTableCount

0028 FfiFiSubtable ;offset to FfiFi

ligature

 ; substitution subtable

 Lookup

 EszetLookup ;Lookup[2] table

definition

0004 4 ;LookupType

 ; ligature subst

000C 0x000C ;LookupFlag

 ; IgnoreLigatures,

IgnoreMarks

0001 1 ;SubTableCount

 Common Table Formats

July 1995 Page 29

0038 EszetSubtable ;offset to Eszet

ligature

 ; substitution subtable

TrueType Open Font Specification Revision 1.0

Page 30 July 1995

Example 5: CoverageFormat1 Table (GlyphID List)

Example 5 illustrates a Coverage table that lists the GlyphIDs of all lowercase descender

glyphs in a font. The table uses the list format instead of the range format because the

GlyphIDs for the descender glyphs are not consecutively ordered.

Example 5

Hex Data Source Comments

 CoverageFormat1

 DescenderCoverage ;Coverage

table definition

0001 1 ;CoverageFormat

 ; lists

0005 5 ;GlyphCount

0038 gGlyphID ;GlyphArray[0]

 ; in GlyphID order

003B jGlyphID ;GlyphArray[1]

0041 pGlyphID ;GlyphArray[2]

0042 qGlyphID ;GlyphArray[3]

004A yGlyphID ;GlyphArray[4]

Example 6: CoverageFormat2 Table (GlyphID Ranges)

Example 6 shows a Coverage table that defines ten numeral glyphs (0 through 9). The

table uses the range format instead of the list format because the GlyphIDs are ordered

consecutively in the font. The StartCoverageIndex of zero (0) indicates that the first

GlyphID, for the zero glyph, returns a Coverage Index of 0. The second GlyphID, for the

numeral one (1) glyph, returns a Coverage Index of 1, and so on.
Example 6

Hex Data Source Comments

 CoverageFormat2
 NumeralCoverage ;Coverage

table definition

0002 2 ;CoverageFormat

 ; GlyphID ranges

0001 1 ;RangeCount

 ;RangeRecord[0]

004E 0glyphID ;Start GlyphID

0057 9glyphID ;End GlyphID

0000 0 ;StartCoverageIndex

 ; first CoverageIndex = 0

 Common Table Formats

July 1995 Page 31

Example 7: ClassDefFormat1 Table (Class Array)

The ClassDef table in Example 7 assigns class values to the lowercase glyphs in a font.

The x-height glyphs are in Class 0, the ascender glyphs are in Class 1, and the descender

glyphs are in Class 2. The array begins with the index for the lowercase “a” glyph.

Example 7

Hex Data Source Comments

 ClassDefFormat1
 LowercaseClassDef ;ClassDef

table definition

0001 1 ;ClassFormat

0032 aGlyphID ;StartGlyph

001A 26 ;GlyphCount

0000 0 ;aGlyph, Xheight Class 0

0001 1 ;bGlyph, Ascender Class 1

0000 0 ;cGlyph, Xheight Class 0

0001 1 ;dGlyph, Ascender Class 1

0000 0 ;eGlyph, Xheight Class 0

0001 1 ;fGlyph, Ascender Class 1

0002 2 ;gGlyph, Descender Class 2

0001 1 ;hGlyph, Ascender Class 1

0000 0 ;iGlyph, Ascender Class 1

0002 2 ;jGlyph, Descender Class 2

0001 1 ;kGlyph, Ascender Class 1

0001 1 ;lGlyph, Ascender Class 1

0000 0 ;mGlyph, Xheight Class 0

0000 0 ;nGlyph, Xheight Class 0

0000 0 ;oGlyph, Xheight Class 0

0002 2 ;pGlyph, Descender Class 2

0002 2 ;qGlyph, Descender Class 2

0000 0 ;rGlyph, Xheight Class 0

0000 0 ;sGlyph, Xheight Class 0

0001 1 ;tGlyph, Ascender Class 1

0000 0 ;uGlyph, Xheight Class 0

0000 0 ;vGlyph, Xheight Class 0

0000 0 ;wGlyph, Xheight Class 0

0000 0 ;xGlyph, Xheight Class 0

0002 2 ;yGlyph, Descender Class 2

0000 0 ;zGlyph, Xheight Class 0

Example 8: ClassDefFormat2 Table (Class Ranges)

In Example 8, the ClassDef table assigns class values to four types of glyphs in the

Arabic script: medium-height base glyphs, high base glyphs, very high base glyphs, and

default mark glyphs. The table lists only Class 1, Class 2, and Class 3; all glyphs not

explicitly assigned a class fall into Class 0.

The table uses the range format because the GlyphIDs in each class are ordered

consecutively in the font. In the ClassRange array, ClassRange definitions are ordered by

the Start glyph index in each range. The indices of the high base glyphs, defined in

ClassRange[0], are first in the font and have a class value of 2. ClassRange[1] defines all

the very high base glyphs and assigns a class value of 3. ClassRange[2] contains all

TrueType Open Font Specification Revision 1.0

Page 32 July 1995

default mark glyphs; the class value is 1. Class 0 consists of all the medium-height base

glyphs, which are not explicitly assigned a class value.

Example 8

Hex Data Source Comments

 ClassDefFormat2

 GlyphHeightClassDef ;Class table

definition

0002 2 ;Class Format

 ; ranges

0003 3 ;ClassRangeCount

 ;ClassRange[0]

 ; ordered by StartGlyphID

0030 tahGlyphID ;Start

 ; first GlyphID in the

range

0031 dhahGlyphID ;End

 ; Last GlyphID in the

range

0002 2 ;Class

 ; high base glyphs

 ;ClassRange[1]

0040 cafGlyphID ;Start

 ;first GlyphID in the

range

0041 gafGlyphID ;End

 ; Last GlyphID in the

range

0003 3 ;Class

 ; very high base glyphs

 ;ClassRange[2]

00D2 fathatanDefaultGlyphID ;Start

 ; first GlyphID in the

range

00D3 dammatanDefaultGlyphID ;End

 ; Last GlyphID in the

range

0001 1 ;Class

 ; default marks

 Common Table Formats

July 1995 Page 33

Example 9: Device Table

Example 9 defines the minimum extent value for a math script, using a Device table to

adjust the value according to the size of the output font. Here, the Device table defines

single-pixel adjustments for font sizes from 11 ppem to 15 ppem. The DeltaFormat is 1,

which signifies a packed array of signed 2-bit values, eight values per uint16.

Example 9

Hex Data Source Comments

 DeviceTableFormat1

 MinCoordDeviceTable ;Device Table

definition

000B 11 ;StartSize, 11 ppem

000F 15 ;EndSize, 15 ppem

0001 1 ;DeltaFormat

 ; signed 2 bit value, 8

values

 ; per uint16

 1 ;increase 11ppem by 1

pixel

 1 ;increase 12ppem by 1

pixel

 1 ;increase 13ppem by 1

pixel

 1 ;increase 14ppem by 1

pixel

5540 1 ;increase 15ppem by 1

pixel

11 ppem 12 ppem 13 ppem 14 ppem 15 ppem padding..........................

0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0

5 5 4 0

